Saturday, March 25, 2023
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
Balanced Post
  • Home
  • Health
  • Fitness
  • Disease
  • Wellness
  • Nutrition
  • Weight Loss
  • Lifestyle
No Result
View All Result
  • Home
  • Health
  • Fitness
  • Disease
  • Wellness
  • Nutrition
  • Weight Loss
  • Lifestyle
No Result
View All Result
Balanced Post
No Result
View All Result
Home Disease

The primary full genome of the simian malaria parasite Plasmodium brasilianum

Balanced Post by Balanced Post
November 18, 2022
in Disease
0
The primary full genome of the simian malaria parasite Plasmodium brasilianum
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


  • Group WH. World malaria report 2021. Accessible: https://www.who.int/publications/i/merchandise/9789240040496. (2021).

  • Cuenca, P. R. et al. Epidemiology of the zoonotic malaria Plasmodium knowlesi in altering landscapes. Adv. Parasit. 113, 225–286. https://doi.org/10.1016/bs.apar.2021.08.006 (2021).

    Article 

    Google Scholar 

  • Anstey, N. M. et al. Knowlesi malaria: Human threat elements, medical spectrum, and pathophysiology. Adv. Parasit. 113, 1–43. https://doi.org/10.1016/bs.apar.2021.08.001 (2021).

    Article 

    Google Scholar 

  • Yap, N. J. et al. Pure human infections with Plasmodium cynomolgi, P. inui, and 4 different simian malaria parasites. Emerg. Infect. Dis. 27, 2187–2191. https://doi.org/10.3201/eid2708.204502 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lalremruata, A. et al. Pure an infection of Plasmodium brasilianum in people: Man and monkey share quartan malaria parasites within the Venezuelan Amazon. EBioMedicine 2, 1186–1192. https://doi.org/10.1016/j.ebiom.2015.07.033 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coatney, G. R., Collins, W. E., Warren, M., & Contacos, P. G., The primate malarias. 1971. Accessible: https://stacks.cdc.gov/view/cdc/6538. (1971).

  • Rutledge, G. G. et al. Plasmodium malariae and P. ovale genomes present insights into malaria parasite evolution. Nature. 542, 101–104. https://doi.org/10.1038/nature21038 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Calvo, N., Morera, J., Dolz, G., Solorzano-Morales, A. & Herrero, M. V. Re-emergence of Plasmodium malariae in Costa Rica. Sci Postprint. https://doi.org/10.14340/spp.2015.04a0004 (2015).

    Article 

    Google Scholar 

  • Fuentes-Ramírez, A., Jiménez-Soto, M., Castro, R., Romero-Zuñiga, J. J. & Dolz, G. Molecular detection of Plasmodium malariae/Plasmodium brasilianum in non-human primates in captivity in Costa Rica. PLoS ONE 12, e0170704. https://doi.org/10.1371/journal.pone.0170704 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fandeur, T., Volney, B., Peneau, C. & Thoisy, B. D. Monkeys of the rainforest in French Guiana are pure reservoirs for P. brasilianum/P. malariae malaria. Parasitology. 120, 11–21. https://doi.org/10.1017/s0031182099005168 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Talundzic, E. et al. First full draft genome sequence of Plasmodium brasilianum. Genome Announc. 5, e01566-e1616. https://doi.org/10.1128/genomea.01566-16 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zimin, A. V. et al. The MaSuRCA genome assembler. Bioinformatics 29, 2669–2677. https://doi.org/10.1093/bioinformatics/btt476 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hunt, M. et al. Circlator: automated circularization of genome assemblies utilizing lengthy sequencing reads. Genome Biol. 16, 294. https://doi.org/10.1186/s13059-015-0849-0 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Assefa, S., Keane, T. M., Otto, T. D., Newbold, C. & Berriman, M. ABACAS: algorithm-based automated contiguation of assembled sequences. Bioinformatics 25, 1968–1969. https://doi.org/10.1093/bioinformatics/btp347 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker, B. J. et al. Pilon: An built-in software for complete microbial variant detection and genome meeting enchancment. PLoS ONE 9, e112963. https://doi.org/10.1371/journal.pone.0112963 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harris RS. Improved pairwise alignment of genomic DNA. (2007).

  • Kearse, M. et al. Geneious Primary: An built-in and extendable desktop software program platform for the group and evaluation of sequence knowledge. Bioinformatics 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Darling, A. C. E., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: A number of alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394–1403. https://doi.org/10.1101/gr.2289704 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y. O. & Borodovsky, M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 33, 6494–6506. https://doi.org/10.1093/nar/gki937 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keller, O., Kollmar, M., Stanke, M. & Waack, S. A novel hybrid gene prediction methodology using protein a number of sequence alignments. Bioinformatics 27, 757–763. https://doi.org/10.1093/bioinformatics/btr010 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cowman, A. F., Tonkin, C. J., Tham, W.-H. & Duraisingh, M. T. The molecular foundation of erythrocyte invasion by malaria parasites. Cell Host Microbe. 22, 232–245. https://doi.org/10.1016/j.chom.2017.07.003 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stamatakis, A. RAxML model 8: A software for phylogenetic evaluation and post-analysis of enormous phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matuschewski, Ok. Getting infectious: Formation and maturation of Plasmodium sporozoites within the Anopheles vector. Cell Microbiol. 8, 1547–1556. https://doi.org/10.1111/j.1462-5822.2006.00778.x (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ménard, R. et al. Circumsporozoite protein is required for improvement of malaria sporozoites in mosquitoes. Nature 385, 336–340. https://doi.org/10.1038/385336a0 (1997).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Boyle, M. J. et al. sequential processing of merozoite floor proteins throughout and after erythrocyte invasion by plasmodium falciparum. Infect. Immun. 82, 924–936. https://doi.org/10.1128/iai.00866-13 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, C. W., Jongwutiwes, S., Putaporntip, C. & Jackson, A. P. Scientific expression and antigenic profiles of a Plasmodium vivax vaccine candidate: Merozoite floor protein 7 (PvMSP-7). Malaria J. 18, 197. https://doi.org/10.1186/s12936-019-2826-7 (2019).

    Article 
    CAS 

    Google Scholar 

  • Bitencourt, A. R. et al. Antigenicity and Immunogenicity of plasmodium vivax merozoite floor protein-3. PLoS ONE 8, e56061. https://doi.org/10.1371/journal.pone.0056061 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rice, B. L. et al. The origin and diversification of the merozoite floor protein 3 (msp3) multi-gene household in Plasmodium vivax and associated parasites. Mol. Phylogenet. Evol. 78, 172–184. https://doi.org/10.1016/j.ympev.2014.05.013 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Castillo, A. I., Pacheco, M. A. & Escalante, A. A. Evolution of the merozoite floor protein 7 (msp7) household in Plasmodium vivax and P. falciparum: A comparative method. Infect. Genetics Evol. 50, 7–19. https://doi.org/10.1016/j.meegid.2017.01.024 (2017).

    Article 
    CAS 

    Google Scholar 

  • Partnership, R. S. Scientific Trials. Efficacy and security of RTS, S/AS01 malaria vaccine with or with out a booster dose in infants and youngsters in Africa: Last outcomes of a section 3, individually randomised, managed trial. Lancet. 386, 31–45. https://doi.org/10.1016/s0140-6736(15)60721-8 (2015).

    Article 

    Google Scholar 

  • Grigg, M. J. et al. Age-related medical spectrum of plasmodium knowlesi malaria and predictors of severity. Clin. Infect. Dis. Official Publ. Infect. Dis. Soc. Am. 67, 350–359. https://doi.org/10.1093/cid/ciy065 (2018).

    Article 

    Google Scholar 

  • Barber, B. E., William, T., Grigg, M. J., Yeo, T. W. & Anstey, N. M. Limitations of microscopy to distinguish Plasmodium species in a area co-endemic for Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi. Malaria J. 12, 8–8. https://doi.org/10.1186/1475-2875-12-8 (2013).

    Article 

    Google Scholar 

  • Rajahram, G. S. et al. Falling Plasmodium knowlesi malaria demise price amongst adults regardless of rising incidence, Sabah, Malaysia, 2010–2014. Emerg Infect Dis. 22, 41–48. https://doi.org/10.3201/eid2201.151305 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lucchi, N. W. et al. A brand new single-step PCR assay for the detection of the zoonotic malaria parasite Plasmodium Knowlesi. PLoS ONE 7, e31848. https://doi.org/10.1371/journal.pone.0031848 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anstey, N. M. & Grigg, M. J. Zoonotic malaria: The higher you look, the extra you discover. J. Infect. Dis. 219, 679–681. https://doi.org/10.1093/infdis/jiy520 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Antinori, S., Galimberti, L., Milazzo, L. & Corbellino, M. Plasmodium knowlesi: The rising zoonotic malaria parasite. Acta Trop. 125, 191–201. https://doi.org/10.1016/j.actatropica.2012.10.008 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Chin, W., Contacos, P. G., Collins, W. E., Jeter, M. H. & Alpert, E. Experimental mosquito-transmission of Plasmodium Knowlesi to man and monkey. Am. J. Trop. Med. Hyg. 17, 355–358. https://doi.org/10.4269/ajtmh.1968.17.355 (1968).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schmidt, L. H., Greenland, R. & Genther, C. S. The transmission of Plasmodium cynomolgi to man. Am. J. Trop. Med. Hyg. 10, 679–688. https://doi.org/10.4269/ajtmh.1961.10.679 (1961).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Coatney, G. R. et al. Transmission of the M pressure of Plasmodium cynomolgi to man. Am. J. Trop. Med. Hyg. 10, 673–678. https://doi.org/10.4269/ajtmh.1961.10.673 (1961).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Contacos, P. G., Lunn, J. S., Coatney, R. G., Kilpatrick, J. W. & Jones, F. E. Quartan-Kind malaria parasite of latest world monkeys transmissible to man. Science 142, 676–676. https://doi.org/10.1126/science.142.3593.676.a (1963).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Coatney, G. R., Chin, W., Contacos, P. G. & King, H. Ok. Plasmodium inui, a quartan-type malaria parasite of previous world monkeys transmissible to man. J Parasitol. 52, 660. https://doi.org/10.2307/3276423 (1966).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Singh, B. et al. A big focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363, 1017–1024. https://doi.org/10.1016/s0140-6736(04)15836-4 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Ta, T. H. et al. First case of a naturally acquired human an infection with Plasmodium cynomolgi. Malaria J. 13, 68–68. https://doi.org/10.1186/1475-2875-13-68 (2014).

    Article 

    Google Scholar 

  • Brasil, P. et al. Outbreak of human malaria attributable to Plasmodium simium within the Atlantic Forest in Rio de Janeiro: A molecular epidemiological investigation. Lancet International Heal. 5, e1038–e1046. https://doi.org/10.1016/s2214-109x(17)30333-9 (2017).

    Article 

    Google Scholar 

  • Liew, J. W. Ok. et al. Pure Plasmodium inui infections in people and anopheles cracens mosquito, Malaysia – Quantity 27, Quantity 10—October 2021 – Rising Infectious Illnesses journal – CDC. Emerg. Infect. Dis. 27, 2700–2703. https://doi.org/10.3201/eid2710.210412 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benavente, E. D. et al. A reference genome and methylome for the Plasmodium knowlesi A1–H.1 line. Int. J. Parasitol. 48, 191–196. https://doi.org/10.1016/j.ijpara.2017.09.008 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ache, A. et al. The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature 455, 799–803. https://doi.org/10.1038/nature07306 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lapp, S. A. et al. PacBio meeting of a Plasmodium knowlesi genome sequence with Hello-C correction and guide annotation of the SICAvar gene household. Parasitology 145, 71–84. https://doi.org/10.1017/s0031182017001329 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tachibana, S.-I. et al. Plasmodium cynomolgi genome sequences present perception into Plasmodium vivax and the monkey malaria clade. Nat. Genet. 44, 1051–1055. https://doi.org/10.1038/ng.2375 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pasini, E. M. et al. An improved Plasmodium cynomolgi genome meeting reveals an surprising methyltransferase gene enlargement. Wellcome Open Res. 2, 42. https://doi.org/10.12688/wellcomeopenres.11864.1 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mourier, T. et al. The genome of the zoonotic malaria parasite Plasmodium simium reveals variations to host switching. Bmc Biol. 19, 219. https://doi.org/10.1186/s12915-021-01139-5 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramasamy, R. Zoonotic malaria – International overview and analysis and coverage wants. Entrance. Public Heal. 2, 123. https://doi.org/10.3389/fpubh.2014.00123 (2014).

    Article 

    Google Scholar 

  • Lal, A. A. et al. Circumsporozoite protein gene from Plasmodium brasilianum. Animal reservoirs for human malaria parasites?. J. Biol. Chem. 263, 5495–5498. https://doi.org/10.1016/s0021-9258(18)60590-3 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Clark, H. C. & Dunn, L. H. Experimental efforts to switch monkey malaria to man. Am. J. Trop. Med. Hyg. 111, 1–10. https://doi.org/10.4269/ajtmh.1931.s1-11.1 (1931).

    Article 

    Google Scholar 

  • Kaiser, M. et al. Wild chimpanzees contaminated with 5 plasmodium species. Emerg. Infect. Dis. 16, 1956–1959. https://doi.org/10.3201/eid1612.100424 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leinonen, M. & Salmela, L. Optical map guided genome meeting. BMC Bioinformatics 21, 285. https://doi.org/10.1186/s12859-020-03623-1 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andrews, S., FastQC: A top quality management software for top throughput sequence knowledge. 2010. Accessible: http://www.bioinformatics.babraham.ac.uk/initiatives/fastqc/. (2010).

  • Bushnell, B., Rood, J. & Singer, E. BBMerge – Correct paired shotgun learn merging by way of overlap. PLoS ONE 12, e0185056. https://doi.org/10.1371/journal.pone.0185056 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gardner, M. J. et al. Organisation and expression of small subunit ribosomal RNA genes encoded by a 35-kilobase round DNA in Plasmodium falciparum. Mol. Biochem. Parasit. 48, 77–88. https://doi.org/10.1016/0166-6851(91)90166-4 (1991).

    Article 
    CAS 

    Google Scholar 

  • Pacheco, M. A. et al. A phylogenetic research of Haemocystidium parasites and different Haemosporida utilizing full mitochondrial genome sequences. Infect. Genetics Evol. 85, 104576. https://doi.org/10.1016/j.meegid.2020.104576 (2020).

    Article 

    Google Scholar 

  • Buchfink, B., Xie, C. & Huson, D. H. Quick and delicate protein alignment utilizing DIAMOND. Nat. Strategies. 12, 59–60. https://doi.org/10.1038/nmeth.3176 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Emms, D. M. & Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238. https://doi.org/10.1186/s13059-019-1832-y (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Götz, S. et al. Excessive-throughput purposeful annotation and knowledge mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435. https://doi.org/10.1093/nar/gkn176 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schwartz, S. et al. Human-mouse alignments with BLASTZ. Genome Res. 13, 103–107. https://doi.org/10.1101/gr.809403 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Castresana, J. Choice of conserved blocks from a number of alignments for his or her use in phylogenetic evaluation. Mol. Biol. Evol. 17, 540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Edgar, R. C. MUSCLE: A number of sequence alignment with excessive accuracy and excessive throughput. Nucleic Acids Res. 32, 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Waskom, M. seaborn: Statistical knowledge visualization. J. Open Supply Softw. 6, 3021. https://doi.org/10.21105/joss.03021 (2021).

    Article 
    ADS 

    Google Scholar 

  • Quinlan, A. R. & Corridor, I. M. BEDTools: A versatile suite of utilities for evaluating genomic options. Bioinformatics 26, 841–842. https://doi.org/10.1093/bioinformatics/btq033 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Larkin, M. A. et al. Clustal W and Clustal X model 2.0. Bioinformatics. 23, 2947–2948. https://doi.org/10.1093/bioinformatics/btm404 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gouy, M., Guindon, S. & Gascuel, O. SeaView model 4: A multiplatform graphical person interface for sequence alignment and phylogenetic tree constructing. Mol. Biol. Evol. 27, 221–224. https://doi.org/10.1093/molbev/msp259 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference underneath blended fashions. Bioinformatics 19, 1572–1574. https://doi.org/10.1093/bioinformatics/btg180 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kumar, S., Stecher, G. & Tamura, Ok. MEGA7: Molecular evolutionary genetics evaluation model 7.0 for larger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adini, A. & Warburg, A. Interplay of Plasmodium gallinaceum ookinetes and oocysts with extracellular matrix proteins. Parasitology 119, 331–336. https://doi.org/10.1017/s0031182099004874 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vlachou, D. et al. Anopheles gambiae laminin interacts with the P25 floor protein of Plasmodium berghei ookinetes. Mol. Biochem. Parasit. 112, 229–237. https://doi.org/10.1016/s0166-6851(00)00371-6 (2001).

    Article 
    CAS 

    Google Scholar 

  • Dessens, J. T. et al. SOAP, a novel malaria ookinete protein concerned in mosquito midgut invasion and oocyst improvement. Mol. Microbiol. 49, 319–329. https://doi.org/10.1046/j.1365-2958.2003.03566.x (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mahairaki, V., Voyatzi, T., Sidén-Kiamos, I. & Louis, C. The Anopheles gambiae gamma1 laminin instantly binds the Plasmodium berghei circumsporozoite- and TRAP-related protein (CTRP). Mol. Biochem. Parasit. 140, 119–121. https://doi.org/10.1016/j.molbiopara.2004.11.012 (2005).

    Article 
    CAS 

    Google Scholar 

  • Engelmann, S., Sinnis, P. & Matuschewski, Ok. Transgenic Plasmodium berghei sporozoites expressing β-galactosidase for quantification of sporozoite transmission. Mol. Biochem. Parasit. 146, 30–37. https://doi.org/10.1016/j.molbiopara.2005.10.015 (2006).

    Article 
    CAS 

    Google Scholar 

  • Beier, J. C., Vaughan, J. A., Madani, A. & Noden, B. H. Plasmodium falciparum: Launch of circumsporozoite protein by sporozoites within the mosquito vector. Exp. Parasitol. 75, 248–256. https://doi.org/10.1016/0014-4894(92)90185-d (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Claudianos, C. et al. A malaria scavenger receptor-like protein important for parasite improvement. Mol. Microbiol. 45, 1473–1484. https://doi.org/10.1046/j.1365-2958.2002.03118.x (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mann, T., Gaskins, E. & Beckers, C. Proteolytic processing of TgIMC1 throughout maturation of the membrane skeleton of toxoplasma gondii *. J Biol Chem. 277, 41240–41246. https://doi.org/10.1074/jbc.m205056200 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aly, A. S. I. & Matuschewski, Ok. A malarial cysteine protease is important for Plasmodium sporozoite egress from oocysts. J. Exp. Med. 202, 225–230. https://doi.org/10.1084/jem.20050545 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, S. Ok. et al. A subset of Plasmodium falciparum SERA genes are expressed and seem to play an essential position within the erythrocytic cycle*. J. Biol. Chem. 277, 47524–47532. https://doi.org/10.1074/jbc.m206974200 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kariu, T., Yuda, M., Yano, Ok. & Chinzei, Y. MAEBL is crucial for Malarial Sporozoite an infection of the mosquito salivary gland. J Exp Drugs. 195, 1317–1323. https://doi.org/10.1084/jem.20011876 (2002).

    Article 
    CAS 

    Google Scholar 

  • Preiser, P. et al. Antibodies in opposition to MAEBL ligand domains M1 and m2 inhibit sporozoite improvement in vitro. Infect Immun. 72, 3604–3608. https://doi.org/10.1128/iai.72.6.3604-3608.2004 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kappe, S. H. I., Noe, A. R., Fraser, T. S., Blair, P. L. & Adams, J. H. A household of chimeric erythrocyte binding proteins of malaria parasites. Proc. Natl. Acad. Sci. 95, 1230–1235. https://doi.org/10.1073/pnas.95.3.1230 (1998).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sultan, A. A. et al. TRAP is important for gliding motility and infectivity of plasmodium sporozoites. Cell 90, 511–522. https://doi.org/10.1016/s0092-8674(00)80511-5 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kappe, S. et al. Conservation of a gliding motility and cell invasion equipment in apicomplexan parasites. J. Cell Biol. 147, 937–944. https://doi.org/10.1083/jcb.147.5.937 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wengelnik, Ok. et al. The A-domain and the thrombospondin-related motif of Plasmodium falciparum TRAP are implicated within the invasion means of mosquito salivary glands. Embo J. 18, 5195–5204. https://doi.org/10.1093/emboj/18.19.5195 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matuschewski, Ok., Nunes, A. C., Nussenzweig, V. & Ménard, R. Plasmodium sporozoite invasion into insect and mammalian cells is directed by the identical twin binding system. Embo J. 21, 1597–1606. https://doi.org/10.1093/emboj/21.7.1597 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Korochkina, S. et al. A mosquito-specific protein household contains candidate receptors for malaria sporozoite invasion of salivary glands. Cell Microbiol. 8, 163–175. https://doi.org/10.1111/j.1462-5822.2005.00611.x (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bhanot, P., Schauer, Ok., Coppens, I. & Nussenzweig, V. A floor phospholipase is concerned within the migration of plasmodium sporozoites by cells*. J Biol Chem. 280, 6752–6760. https://doi.org/10.1074/jbc.m411465200 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mueller, A.-Ok., Labaied, M., Kappe, S. H. I. & Matuschewski, Ok. Genetically modified Plasmodium parasites as a protecting experimental malaria vaccine. Nature 433, 164–167. https://doi.org/10.1038/nature03188 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mueller, A.-Ok. et al. Plasmodium liver stage developmental arrest by depletion of a protein on the parasite–host interface. Proc. Natl. Acad. Sci. 102, 3022–3027. https://doi.org/10.1073/pnas.0408442102 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ishino, T., Chinzei, Y. & Yuda, M. Two proteins with 6-cys motifs are required for malarial parasites to decide to an infection of the hepatocyte. Mol. Microbiol. 58, 1264–1275. https://doi.org/10.1111/j.1365-2958.2005.04801.x (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van Dijk, M. R. et al. Genetically attenuated, P36p-deficient malarial sporozoites induce protecting immunity and apoptosis of contaminated liver cells. Proc. Natl. Acad. Sci. 102, 12194–12199. https://doi.org/10.1073/pnas.0500925102 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ishino, T., Yano, Ok., Chinzei, Y. & Yuda, M. Cell-passage exercise is required for the malarial parasite to cross the liver sinusoidal cell layer. Plos Biol. 2, e4. https://doi.org/10.1371/journal.pbio.0020004 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ishino, T., Chinzei, Y. & Yuda, M. A Plasmodium sporozoite protein with a membrane assault advanced area is required for breaching the liver sinusoidal cell layer previous to hepatocyte an infection†. Cell Microbiol. 7, 199–208. https://doi.org/10.1111/j.1462-5822.2004.00447.x (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kaiser, Ok., Camargo, N. & Kappe, S. H. I. Transformation of sporozoites into early exoerythrocytic malaria parasites doesn’t require host cells. J. Exp. Med. 197, 1045–1050. https://doi.org/10.1084/jem.20022100 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source_link

    Advertisement Banner
    Previous Post

    Weight Loss Success Story – Lorraine B. • Easy Nourished Residing

    Next Post

    Solutions to “Why Can’t I Sleep?” and Different Sleep Issues

    Balanced Post

    Balanced Post

    Next Post
    Solutions to “Why Can’t I Sleep?” and Different Sleep Issues

    Solutions to “Why Can’t I Sleep?” and Different Sleep Issues

    Recommended

    Restaurant advertising and promoting

    Restaurant advertising and promoting

    4 months ago
    How one can Prioritize Self-Care Throughout the Vacation Season

    How one can Prioritize Self-Care Throughout the Vacation Season

    4 months ago

    Don't Miss

    Advantages, Diet Reality, Aspect Results & Recipes- HealthifyMe

    Advantages, Diet Reality, Aspect Results & Recipes- HealthifyMe

    March 25, 2023
    Make Your Manicure Final Longer: My EXACT Technique

    Make Your Manicure Final Longer: My EXACT Technique

    March 25, 2023
    Modelling to tell next-generation medical interventions for malaria prevention and remedy

    Modelling to tell next-generation medical interventions for malaria prevention and remedy

    March 25, 2023
    Scientists warned a decade in the past American lives have been shortening. Then it acquired worse : Pictures

    Scientists warned a decade in the past American lives have been shortening. Then it acquired worse : Pictures

    March 25, 2023

    Balanced Post

    Welcome to Balanced Post The goal of Balanced Post is to give you the absolute best news sources for any topic! Our topics are carefully curated and constantly updated as we know the web moves fast so we try to as well.

    Categories

    • Disease
    • Fitness
    • Health
    • Lifestyle
    • Nutrition
    • Weight Loss
    • Wellness

    Recent News

    Advantages, Diet Reality, Aspect Results & Recipes- HealthifyMe

    Advantages, Diet Reality, Aspect Results & Recipes- HealthifyMe

    March 25, 2023
    Make Your Manicure Final Longer: My EXACT Technique

    Make Your Manicure Final Longer: My EXACT Technique

    March 25, 2023
    • Home
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions

    Copyright © 2022 Balancedpost.com | All Rights Reserved.

    No Result
    View All Result
    • Home
    • Health
    • Fitness
    • Disease
    • Wellness
    • Nutrition
    • Weight Loss
    • Lifestyle

    Copyright © 2022 Balancedpost.com | All Rights Reserved.