Group WH. World malaria report 2021. Accessible: https://www.who.int/publications/i/merchandise/9789240040496. (2021).
Cuenca, P. R. et al. Epidemiology of the zoonotic malaria Plasmodium knowlesi in altering landscapes. Adv. Parasit. 113, 225–286. https://doi.org/10.1016/bs.apar.2021.08.006 (2021).
Google Scholar
Anstey, N. M. et al. Knowlesi malaria: Human threat elements, medical spectrum, and pathophysiology. Adv. Parasit. 113, 1–43. https://doi.org/10.1016/bs.apar.2021.08.001 (2021).
Google Scholar
Yap, N. J. et al. Pure human infections with Plasmodium cynomolgi, P. inui, and 4 different simian malaria parasites. Emerg. Infect. Dis. 27, 2187–2191. https://doi.org/10.3201/eid2708.204502 (2021).
Google Scholar
Lalremruata, A. et al. Pure an infection of Plasmodium brasilianum in people: Man and monkey share quartan malaria parasites within the Venezuelan Amazon. EBioMedicine 2, 1186–1192. https://doi.org/10.1016/j.ebiom.2015.07.033 (2015).
Google Scholar
Coatney, G. R., Collins, W. E., Warren, M., & Contacos, P. G., The primate malarias. 1971. Accessible: https://stacks.cdc.gov/view/cdc/6538. (1971).
Rutledge, G. G. et al. Plasmodium malariae and P. ovale genomes present insights into malaria parasite evolution. Nature. 542, 101–104. https://doi.org/10.1038/nature21038 (2017).
Google Scholar
Calvo, N., Morera, J., Dolz, G., Solorzano-Morales, A. & Herrero, M. V. Re-emergence of Plasmodium malariae in Costa Rica. Sci Postprint. https://doi.org/10.14340/spp.2015.04a0004 (2015).
Google Scholar
Fuentes-Ramírez, A., Jiménez-Soto, M., Castro, R., Romero-Zuñiga, J. J. & Dolz, G. Molecular detection of Plasmodium malariae/Plasmodium brasilianum in non-human primates in captivity in Costa Rica. PLoS ONE 12, e0170704. https://doi.org/10.1371/journal.pone.0170704 (2017).
Google Scholar
Fandeur, T., Volney, B., Peneau, C. & Thoisy, B. D. Monkeys of the rainforest in French Guiana are pure reservoirs for P. brasilianum/P. malariae malaria. Parasitology. 120, 11–21. https://doi.org/10.1017/s0031182099005168 (2000).
Google Scholar
Talundzic, E. et al. First full draft genome sequence of Plasmodium brasilianum. Genome Announc. 5, e01566-e1616. https://doi.org/10.1128/genomea.01566-16 (2017).
Google Scholar
Zimin, A. V. et al. The MaSuRCA genome assembler. Bioinformatics 29, 2669–2677. https://doi.org/10.1093/bioinformatics/btt476 (2013).
Google Scholar
Hunt, M. et al. Circlator: automated circularization of genome assemblies utilizing lengthy sequencing reads. Genome Biol. 16, 294. https://doi.org/10.1186/s13059-015-0849-0 (2015).
Google Scholar
Assefa, S., Keane, T. M., Otto, T. D., Newbold, C. & Berriman, M. ABACAS: algorithm-based automated contiguation of assembled sequences. Bioinformatics 25, 1968–1969. https://doi.org/10.1093/bioinformatics/btp347 (2009).
Google Scholar
Walker, B. J. et al. Pilon: An built-in software for complete microbial variant detection and genome meeting enchancment. PLoS ONE 9, e112963. https://doi.org/10.1371/journal.pone.0112963 (2014).
Google Scholar
Harris RS. Improved pairwise alignment of genomic DNA. (2007).
Kearse, M. et al. Geneious Primary: An built-in and extendable desktop software program platform for the group and evaluation of sequence knowledge. Bioinformatics 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).
Google Scholar
Darling, A. C. E., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: A number of alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394–1403. https://doi.org/10.1101/gr.2289704 (2004).
Google Scholar
Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y. O. & Borodovsky, M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 33, 6494–6506. https://doi.org/10.1093/nar/gki937 (2005).
Google Scholar
Keller, O., Kollmar, M., Stanke, M. & Waack, S. A novel hybrid gene prediction methodology using protein a number of sequence alignments. Bioinformatics 27, 757–763. https://doi.org/10.1093/bioinformatics/btr010 (2011).
Google Scholar
Cowman, A. F., Tonkin, C. J., Tham, W.-H. & Duraisingh, M. T. The molecular foundation of erythrocyte invasion by malaria parasites. Cell Host Microbe. 22, 232–245. https://doi.org/10.1016/j.chom.2017.07.003 (2017).
Google Scholar
Stamatakis, A. RAxML model 8: A software for phylogenetic evaluation and post-analysis of enormous phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).
Google Scholar
Matuschewski, Ok. Getting infectious: Formation and maturation of Plasmodium sporozoites within the Anopheles vector. Cell Microbiol. 8, 1547–1556. https://doi.org/10.1111/j.1462-5822.2006.00778.x (2006).
Google Scholar
Ménard, R. et al. Circumsporozoite protein is required for improvement of malaria sporozoites in mosquitoes. Nature 385, 336–340. https://doi.org/10.1038/385336a0 (1997).
Google Scholar
Boyle, M. J. et al. sequential processing of merozoite floor proteins throughout and after erythrocyte invasion by plasmodium falciparum. Infect. Immun. 82, 924–936. https://doi.org/10.1128/iai.00866-13 (2014).
Google Scholar
Cheng, C. W., Jongwutiwes, S., Putaporntip, C. & Jackson, A. P. Scientific expression and antigenic profiles of a Plasmodium vivax vaccine candidate: Merozoite floor protein 7 (PvMSP-7). Malaria J. 18, 197. https://doi.org/10.1186/s12936-019-2826-7 (2019).
Google Scholar
Bitencourt, A. R. et al. Antigenicity and Immunogenicity of plasmodium vivax merozoite floor protein-3. PLoS ONE 8, e56061. https://doi.org/10.1371/journal.pone.0056061 (2013).
Google Scholar
Rice, B. L. et al. The origin and diversification of the merozoite floor protein 3 (msp3) multi-gene household in Plasmodium vivax and associated parasites. Mol. Phylogenet. Evol. 78, 172–184. https://doi.org/10.1016/j.ympev.2014.05.013 (2014).
Google Scholar
Castillo, A. I., Pacheco, M. A. & Escalante, A. A. Evolution of the merozoite floor protein 7 (msp7) household in Plasmodium vivax and P. falciparum: A comparative method. Infect. Genetics Evol. 50, 7–19. https://doi.org/10.1016/j.meegid.2017.01.024 (2017).
Google Scholar
Partnership, R. S. Scientific Trials. Efficacy and security of RTS, S/AS01 malaria vaccine with or with out a booster dose in infants and youngsters in Africa: Last outcomes of a section 3, individually randomised, managed trial. Lancet. 386, 31–45. https://doi.org/10.1016/s0140-6736(15)60721-8 (2015).
Google Scholar
Grigg, M. J. et al. Age-related medical spectrum of plasmodium knowlesi malaria and predictors of severity. Clin. Infect. Dis. Official Publ. Infect. Dis. Soc. Am. 67, 350–359. https://doi.org/10.1093/cid/ciy065 (2018).
Google Scholar
Barber, B. E., William, T., Grigg, M. J., Yeo, T. W. & Anstey, N. M. Limitations of microscopy to distinguish Plasmodium species in a area co-endemic for Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi. Malaria J. 12, 8–8. https://doi.org/10.1186/1475-2875-12-8 (2013).
Google Scholar
Rajahram, G. S. et al. Falling Plasmodium knowlesi malaria demise price amongst adults regardless of rising incidence, Sabah, Malaysia, 2010–2014. Emerg Infect Dis. 22, 41–48. https://doi.org/10.3201/eid2201.151305 (2016).
Google Scholar
Lucchi, N. W. et al. A brand new single-step PCR assay for the detection of the zoonotic malaria parasite Plasmodium Knowlesi. PLoS ONE 7, e31848. https://doi.org/10.1371/journal.pone.0031848 (2012).
Google Scholar
Anstey, N. M. & Grigg, M. J. Zoonotic malaria: The higher you look, the extra you discover. J. Infect. Dis. 219, 679–681. https://doi.org/10.1093/infdis/jiy520 (2019).
Google Scholar
Antinori, S., Galimberti, L., Milazzo, L. & Corbellino, M. Plasmodium knowlesi: The rising zoonotic malaria parasite. Acta Trop. 125, 191–201. https://doi.org/10.1016/j.actatropica.2012.10.008 (2013).
Google Scholar
Chin, W., Contacos, P. G., Collins, W. E., Jeter, M. H. & Alpert, E. Experimental mosquito-transmission of Plasmodium Knowlesi to man and monkey. Am. J. Trop. Med. Hyg. 17, 355–358. https://doi.org/10.4269/ajtmh.1968.17.355 (1968).
Google Scholar
Schmidt, L. H., Greenland, R. & Genther, C. S. The transmission of Plasmodium cynomolgi to man. Am. J. Trop. Med. Hyg. 10, 679–688. https://doi.org/10.4269/ajtmh.1961.10.679 (1961).
Google Scholar
Coatney, G. R. et al. Transmission of the M pressure of Plasmodium cynomolgi to man. Am. J. Trop. Med. Hyg. 10, 673–678. https://doi.org/10.4269/ajtmh.1961.10.673 (1961).
Google Scholar
Contacos, P. G., Lunn, J. S., Coatney, R. G., Kilpatrick, J. W. & Jones, F. E. Quartan-Kind malaria parasite of latest world monkeys transmissible to man. Science 142, 676–676. https://doi.org/10.1126/science.142.3593.676.a (1963).
Google Scholar
Coatney, G. R., Chin, W., Contacos, P. G. & King, H. Ok. Plasmodium inui, a quartan-type malaria parasite of previous world monkeys transmissible to man. J Parasitol. 52, 660. https://doi.org/10.2307/3276423 (1966).
Google Scholar
Singh, B. et al. A big focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363, 1017–1024. https://doi.org/10.1016/s0140-6736(04)15836-4 (2004).
Google Scholar
Ta, T. H. et al. First case of a naturally acquired human an infection with Plasmodium cynomolgi. Malaria J. 13, 68–68. https://doi.org/10.1186/1475-2875-13-68 (2014).
Google Scholar
Brasil, P. et al. Outbreak of human malaria attributable to Plasmodium simium within the Atlantic Forest in Rio de Janeiro: A molecular epidemiological investigation. Lancet International Heal. 5, e1038–e1046. https://doi.org/10.1016/s2214-109x(17)30333-9 (2017).
Google Scholar
Liew, J. W. Ok. et al. Pure Plasmodium inui infections in people and anopheles cracens mosquito, Malaysia – Quantity 27, Quantity 10—October 2021 – Rising Infectious Illnesses journal – CDC. Emerg. Infect. Dis. 27, 2700–2703. https://doi.org/10.3201/eid2710.210412 (2021).
Google Scholar
Benavente, E. D. et al. A reference genome and methylome for the Plasmodium knowlesi A1–H.1 line. Int. J. Parasitol. 48, 191–196. https://doi.org/10.1016/j.ijpara.2017.09.008 (2018).
Google Scholar
Ache, A. et al. The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature 455, 799–803. https://doi.org/10.1038/nature07306 (2008).
Google Scholar
Lapp, S. A. et al. PacBio meeting of a Plasmodium knowlesi genome sequence with Hello-C correction and guide annotation of the SICAvar gene household. Parasitology 145, 71–84. https://doi.org/10.1017/s0031182017001329 (2018).
Google Scholar
Tachibana, S.-I. et al. Plasmodium cynomolgi genome sequences present perception into Plasmodium vivax and the monkey malaria clade. Nat. Genet. 44, 1051–1055. https://doi.org/10.1038/ng.2375 (2012).
Google Scholar
Pasini, E. M. et al. An improved Plasmodium cynomolgi genome meeting reveals an surprising methyltransferase gene enlargement. Wellcome Open Res. 2, 42. https://doi.org/10.12688/wellcomeopenres.11864.1 (2017).
Google Scholar
Mourier, T. et al. The genome of the zoonotic malaria parasite Plasmodium simium reveals variations to host switching. Bmc Biol. 19, 219. https://doi.org/10.1186/s12915-021-01139-5 (2021).
Google Scholar
Ramasamy, R. Zoonotic malaria – International overview and analysis and coverage wants. Entrance. Public Heal. 2, 123. https://doi.org/10.3389/fpubh.2014.00123 (2014).
Google Scholar
Lal, A. A. et al. Circumsporozoite protein gene from Plasmodium brasilianum. Animal reservoirs for human malaria parasites?. J. Biol. Chem. 263, 5495–5498. https://doi.org/10.1016/s0021-9258(18)60590-3 (1988).
Google Scholar
Clark, H. C. & Dunn, L. H. Experimental efforts to switch monkey malaria to man. Am. J. Trop. Med. Hyg. 111, 1–10. https://doi.org/10.4269/ajtmh.1931.s1-11.1 (1931).
Google Scholar
Kaiser, M. et al. Wild chimpanzees contaminated with 5 plasmodium species. Emerg. Infect. Dis. 16, 1956–1959. https://doi.org/10.3201/eid1612.100424 (2010).
Google Scholar
Leinonen, M. & Salmela, L. Optical map guided genome meeting. BMC Bioinformatics 21, 285. https://doi.org/10.1186/s12859-020-03623-1 (2020).
Google Scholar
Andrews, S., FastQC: A top quality management software for top throughput sequence knowledge. 2010. Accessible: http://www.bioinformatics.babraham.ac.uk/initiatives/fastqc/. (2010).
Bushnell, B., Rood, J. & Singer, E. BBMerge – Correct paired shotgun learn merging by way of overlap. PLoS ONE 12, e0185056. https://doi.org/10.1371/journal.pone.0185056 (2017).
Google Scholar
Gardner, M. J. et al. Organisation and expression of small subunit ribosomal RNA genes encoded by a 35-kilobase round DNA in Plasmodium falciparum. Mol. Biochem. Parasit. 48, 77–88. https://doi.org/10.1016/0166-6851(91)90166-4 (1991).
Google Scholar
Pacheco, M. A. et al. A phylogenetic research of Haemocystidium parasites and different Haemosporida utilizing full mitochondrial genome sequences. Infect. Genetics Evol. 85, 104576. https://doi.org/10.1016/j.meegid.2020.104576 (2020).
Google Scholar
Buchfink, B., Xie, C. & Huson, D. H. Quick and delicate protein alignment utilizing DIAMOND. Nat. Strategies. 12, 59–60. https://doi.org/10.1038/nmeth.3176 (2015).
Google Scholar
Emms, D. M. & Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238. https://doi.org/10.1186/s13059-019-1832-y (2019).
Google Scholar
Götz, S. et al. Excessive-throughput purposeful annotation and knowledge mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435. https://doi.org/10.1093/nar/gkn176 (2008).
Google Scholar
Schwartz, S. et al. Human-mouse alignments with BLASTZ. Genome Res. 13, 103–107. https://doi.org/10.1101/gr.809403 (2003).
Google Scholar
Castresana, J. Choice of conserved blocks from a number of alignments for his or her use in phylogenetic evaluation. Mol. Biol. Evol. 17, 540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334 (2000).
Google Scholar
Edgar, R. C. MUSCLE: A number of sequence alignment with excessive accuracy and excessive throughput. Nucleic Acids Res. 32, 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).
Google Scholar
Waskom, M. seaborn: Statistical knowledge visualization. J. Open Supply Softw. 6, 3021. https://doi.org/10.21105/joss.03021 (2021).
Google Scholar
Quinlan, A. R. & Corridor, I. M. BEDTools: A versatile suite of utilities for evaluating genomic options. Bioinformatics 26, 841–842. https://doi.org/10.1093/bioinformatics/btq033 (2010).
Google Scholar
Larkin, M. A. et al. Clustal W and Clustal X model 2.0. Bioinformatics. 23, 2947–2948. https://doi.org/10.1093/bioinformatics/btm404 (2007).
Google Scholar
Gouy, M., Guindon, S. & Gascuel, O. SeaView model 4: A multiplatform graphical person interface for sequence alignment and phylogenetic tree constructing. Mol. Biol. Evol. 27, 221–224. https://doi.org/10.1093/molbev/msp259 (2010).
Google Scholar
Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference underneath blended fashions. Bioinformatics 19, 1572–1574. https://doi.org/10.1093/bioinformatics/btg180 (2003).
Google Scholar
Kumar, S., Stecher, G. & Tamura, Ok. MEGA7: Molecular evolutionary genetics evaluation model 7.0 for larger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).
Google Scholar
Adini, A. & Warburg, A. Interplay of Plasmodium gallinaceum ookinetes and oocysts with extracellular matrix proteins. Parasitology 119, 331–336. https://doi.org/10.1017/s0031182099004874 (1999).
Google Scholar
Vlachou, D. et al. Anopheles gambiae laminin interacts with the P25 floor protein of Plasmodium berghei ookinetes. Mol. Biochem. Parasit. 112, 229–237. https://doi.org/10.1016/s0166-6851(00)00371-6 (2001).
Google Scholar
Dessens, J. T. et al. SOAP, a novel malaria ookinete protein concerned in mosquito midgut invasion and oocyst improvement. Mol. Microbiol. 49, 319–329. https://doi.org/10.1046/j.1365-2958.2003.03566.x (2003).
Google Scholar
Mahairaki, V., Voyatzi, T., Sidén-Kiamos, I. & Louis, C. The Anopheles gambiae gamma1 laminin instantly binds the Plasmodium berghei circumsporozoite- and TRAP-related protein (CTRP). Mol. Biochem. Parasit. 140, 119–121. https://doi.org/10.1016/j.molbiopara.2004.11.012 (2005).
Google Scholar
Engelmann, S., Sinnis, P. & Matuschewski, Ok. Transgenic Plasmodium berghei sporozoites expressing β-galactosidase for quantification of sporozoite transmission. Mol. Biochem. Parasit. 146, 30–37. https://doi.org/10.1016/j.molbiopara.2005.10.015 (2006).
Google Scholar
Beier, J. C., Vaughan, J. A., Madani, A. & Noden, B. H. Plasmodium falciparum: Launch of circumsporozoite protein by sporozoites within the mosquito vector. Exp. Parasitol. 75, 248–256. https://doi.org/10.1016/0014-4894(92)90185-d (1992).
Google Scholar
Claudianos, C. et al. A malaria scavenger receptor-like protein important for parasite improvement. Mol. Microbiol. 45, 1473–1484. https://doi.org/10.1046/j.1365-2958.2002.03118.x (2002).
Google Scholar
Mann, T., Gaskins, E. & Beckers, C. Proteolytic processing of TgIMC1 throughout maturation of the membrane skeleton of toxoplasma gondii *. J Biol Chem. 277, 41240–41246. https://doi.org/10.1074/jbc.m205056200 (2002).
Google Scholar
Aly, A. S. I. & Matuschewski, Ok. A malarial cysteine protease is important for Plasmodium sporozoite egress from oocysts. J. Exp. Med. 202, 225–230. https://doi.org/10.1084/jem.20050545 (2005).
Google Scholar
Miller, S. Ok. et al. A subset of Plasmodium falciparum SERA genes are expressed and seem to play an essential position within the erythrocytic cycle*. J. Biol. Chem. 277, 47524–47532. https://doi.org/10.1074/jbc.m206974200 (2002).
Google Scholar
Kariu, T., Yuda, M., Yano, Ok. & Chinzei, Y. MAEBL is crucial for Malarial Sporozoite an infection of the mosquito salivary gland. J Exp Drugs. 195, 1317–1323. https://doi.org/10.1084/jem.20011876 (2002).
Google Scholar
Preiser, P. et al. Antibodies in opposition to MAEBL ligand domains M1 and m2 inhibit sporozoite improvement in vitro. Infect Immun. 72, 3604–3608. https://doi.org/10.1128/iai.72.6.3604-3608.2004 (2004).
Google Scholar
Kappe, S. H. I., Noe, A. R., Fraser, T. S., Blair, P. L. & Adams, J. H. A household of chimeric erythrocyte binding proteins of malaria parasites. Proc. Natl. Acad. Sci. 95, 1230–1235. https://doi.org/10.1073/pnas.95.3.1230 (1998).
Google Scholar
Sultan, A. A. et al. TRAP is important for gliding motility and infectivity of plasmodium sporozoites. Cell 90, 511–522. https://doi.org/10.1016/s0092-8674(00)80511-5 (1997).
Google Scholar
Kappe, S. et al. Conservation of a gliding motility and cell invasion equipment in apicomplexan parasites. J. Cell Biol. 147, 937–944. https://doi.org/10.1083/jcb.147.5.937 (1999).
Google Scholar
Wengelnik, Ok. et al. The A-domain and the thrombospondin-related motif of Plasmodium falciparum TRAP are implicated within the invasion means of mosquito salivary glands. Embo J. 18, 5195–5204. https://doi.org/10.1093/emboj/18.19.5195 (1999).
Google Scholar
Matuschewski, Ok., Nunes, A. C., Nussenzweig, V. & Ménard, R. Plasmodium sporozoite invasion into insect and mammalian cells is directed by the identical twin binding system. Embo J. 21, 1597–1606. https://doi.org/10.1093/emboj/21.7.1597 (2002).
Google Scholar
Korochkina, S. et al. A mosquito-specific protein household contains candidate receptors for malaria sporozoite invasion of salivary glands. Cell Microbiol. 8, 163–175. https://doi.org/10.1111/j.1462-5822.2005.00611.x (2006).
Google Scholar
Bhanot, P., Schauer, Ok., Coppens, I. & Nussenzweig, V. A floor phospholipase is concerned within the migration of plasmodium sporozoites by cells*. J Biol Chem. 280, 6752–6760. https://doi.org/10.1074/jbc.m411465200 (2005).
Google Scholar
Mueller, A.-Ok., Labaied, M., Kappe, S. H. I. & Matuschewski, Ok. Genetically modified Plasmodium parasites as a protecting experimental malaria vaccine. Nature 433, 164–167. https://doi.org/10.1038/nature03188 (2005).
Google Scholar
Mueller, A.-Ok. et al. Plasmodium liver stage developmental arrest by depletion of a protein on the parasite–host interface. Proc. Natl. Acad. Sci. 102, 3022–3027. https://doi.org/10.1073/pnas.0408442102 (2005).
Google Scholar
Ishino, T., Chinzei, Y. & Yuda, M. Two proteins with 6-cys motifs are required for malarial parasites to decide to an infection of the hepatocyte. Mol. Microbiol. 58, 1264–1275. https://doi.org/10.1111/j.1365-2958.2005.04801.x (2005).
Google Scholar
van Dijk, M. R. et al. Genetically attenuated, P36p-deficient malarial sporozoites induce protecting immunity and apoptosis of contaminated liver cells. Proc. Natl. Acad. Sci. 102, 12194–12199. https://doi.org/10.1073/pnas.0500925102 (2005).
Google Scholar
Ishino, T., Yano, Ok., Chinzei, Y. & Yuda, M. Cell-passage exercise is required for the malarial parasite to cross the liver sinusoidal cell layer. Plos Biol. 2, e4. https://doi.org/10.1371/journal.pbio.0020004 (2004).
Google Scholar
Ishino, T., Chinzei, Y. & Yuda, M. A Plasmodium sporozoite protein with a membrane assault advanced area is required for breaching the liver sinusoidal cell layer previous to hepatocyte an infection†. Cell Microbiol. 7, 199–208. https://doi.org/10.1111/j.1462-5822.2004.00447.x (2005).
Google Scholar
Kaiser, Ok., Camargo, N. & Kappe, S. H. I. Transformation of sporozoites into early exoerythrocytic malaria parasites doesn’t require host cells. J. Exp. Med. 197, 1045–1050. https://doi.org/10.1084/jem.20022100 (2003).
Google Scholar