Ke, C. et al. Traits of sufferers with kidney harm related to COVID-19. Int. Immunopharmacol. 96, 107794 (2021).
Google Scholar
Smarz-Widelska, I. et al. Pathophysiology and scientific manifestations of COVID-19-related acute kidney injury-the present state of data and future views. Int. J. Mol. Sci. 22, 7082 (2021).
Google Scholar
Punj, S., Eng, E. & Shetty, A. A. Coronavirus illness 2019 and kidney harm. Curr. Opin. Nephrol. Hypertens. 30, 444–449 (2021).
Google Scholar
Redant, S., De Bels, D. & Honoré, P. M. Extreme acute respiratory syndrome coronavirus-2-associated acute kidney harm: A story overview targeted upon pathophysiology. Crit. Care Med. 49, e533–e540 (2021).
Google Scholar
Ahmadian, E. et al. Covid-19 and kidney harm: Pathophysiology and molecular mechanisms. Rev. Med. Virol. 31, e2176 (2021).
Google Scholar
Yap, S. C. & Lee, H. T. Adenosine and safety from acute kidney harm. Curr. Opin. Nephrol. Hypertens. 21, 24–32 (2012).
Google Scholar
Lee, H. T. et al. A3 adenosine receptor activation decreases mortality and renal and hepatic harm in murine septic peritonitis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R959–969 (2006).
Google Scholar
Lee, H. T. et al. A1 adenosine receptor knockout mice exhibit elevated renal harm following ischemia and reperfusion. Am. J. Physiol. Renal Physiol. 286, F298–306 (2004).
Google Scholar
Park, S. W. et al. Selective intrarenal human A1 adenosine receptor overexpression reduces acute liver and kidney harm after hepatic ischemia reperfusion in mice. Lab. Make investments. 90, 476–495 (2010).
Google Scholar
Kim, J. Y. et al. IL-11 is required for A1 adenosine receptor-mediated safety towards ischemic AKI. J. Am. Soc. Nephrol. 24, 1558–1570 (2013).
Google Scholar
Okusa, M. D. A(2A) adenosine receptor: A novel therapeutic goal in renal illness. Am. J. Physiol. Renal Physiol. 282, F10–18 (2002).
Google Scholar
Vincent, I. S. & Okusa, M. D. Adenosine 2A receptors in acute kidney harm. Acta Physiol. (Oxf.) 214, 303–310 (2015).
Google Scholar
Okusa, M. D. et al. A(2A) adenosine receptor-mediated inhibition of renal harm and neutrophil adhesion. Am. J. Physiol. Renal Physiol. 279, F809-818 (2000).
Google Scholar
Li, L. et al. Dendritic cells tolerized with adenosine A2AR agonist attenuate acute kidney harm. J. Clin. Make investments. 122, 3931–3942 (2012).
Google Scholar
Okusa, M. D. et al. Enhanced safety from renal ischemia-reperfusion [correction of ischemia:reperfusion] harm with A(2A)-adenosine receptor activation and PDE 4 inhibition. Kidney Int. 59, 2114–2125 (2001).
Google Scholar
Grenz, A. et al. The reno-vascular A2B adenosine receptor protects the kidney from ischemia. PLoS Med. 5, e137 (2008).
Google Scholar
Dwyer, Ok. M., Kishore, B. Ok. & Robson, S. C. Conversion of extracellular ATP into adenosine: A grasp swap in renal well being and illness. Nat. Rev. Nephrol. 16, 509–524 (2020).
Google Scholar
Yang, M. et al. Overexpressed CD39 mitigates sepsis-induced kidney epithelial cell harm by way of suppressing the activation of NLR household pyrin area containing 3. Int. J. Mol. Med. 44, 1707–1718 (2019).
Google Scholar
Grenz, A. et al. Contribution of E-NTPDase1 (CD39) to renal safety from ischemia-reperfusion harm. Faseb J. 21, 2863–2873 (2007).
Google Scholar
Grenz, A. et al. Protecting function of ecto-5’-nucleotidase (CD73) in renal ischemia. J. Am. Soc. Nephrol. 18, 833–845 (2007).
Google Scholar
Módis, Ok. et al. Cytoprotective results of adenosine and inosine in an in vitro mannequin of acute tubular necrosis. Br. J. Pharmacol. 158, 1565–1578 (2009).
Google Scholar
Kelly, Ok. J., Plotkin, Z. & Dagher, P. C. Guanosine supplementation reduces apoptosis and protects renal operate within the setting of ischemic harm. J. Clin. Make investments. 108, 1291–1298 (2001).
Google Scholar
Correale, P. et al. Therapeutic results of adenosine in excessive circulation 21% oxygen aereosol in sufferers with Covid19-pneumonia. PLoS ONE 15, e0239692 (2020).
Google Scholar
Bain, W. et al. COVID-19 versus Non-COVID-19 acute respiratory misery syndrome: Comparability of demographics, physiologic parameters, inflammatory biomarkers, and scientific outcomes. Ann. Am. Thorac. Soc. 18, 1202–1210 (2021).
Google Scholar
Bellomo, R. et al. Acute renal failure—definition, consequence measures, animal fashions, fluid remedy and knowledge expertise wants: The Second Worldwide Consensus Convention of the Acute Dialysis High quality Initiative (ADQI) Group. Crit. Care 8, R204-212 (2004).
Google Scholar
Kampf, G., Voss, A. & Scheithauer, S. Inactivation of coronaviruses by warmth. J. Hosp. Infect. 105, 348–349 (2020).
Google Scholar
Jackson, E. Ok., Ren, J. & Mi, Z. Extracellular 2’,3’-cAMP is a supply of adenosine. J. Biol. Chem. 284, 33097–33106 (2009).
Google Scholar
Kitsios, G. D. et al. Host-response subphenotypes provide prognostic enrichment in sufferers with or in danger for acute respiratory misery syndrome. Crit. Care Med. 47, 1724–1734 (2019).
Google Scholar
Anders, H. J. et al. Prediction of creatinine clearance from serum creatinine in sufferers with rheumatoid arthritis: Comparability of six formulae and one nomogram. Clin. Rheumatol. 19, 26–29 (2000).
Google Scholar
Jackson, E. Ok., Gillespie, D. G. & Mi, Z. 8-Aminoguanosine and 8-aminoguanine exert diuretic, natriuretic, glucosuric, and antihypertensive exercise. J. Pharmacol. Exp. Ther. 359, 420–435 (2016).
Google Scholar
Jackson, E. Ok. & Mi, Z. 8-Aminoguanosine exerts diuretic, natriuretic, and glucosuric exercise by way of conversion to 8-aminoguanine, but has direct antikaliuretic results. J. Pharmacol. Exp. Ther. 363, 358–366 (2017).
Google Scholar
Jackson, E. Ok. et al. 8-Aminoguanine induces diuresis, natriuresis, and glucosuria by inhibiting purine nucleoside phosphorylase and reduces potassium excretion by inhibiting Rac1. J. Am. Coronary heart Assoc. 7, e010085 (2018).
Google Scholar
Alcedo, Ok. P., Bowser, J. L. & Snider, N. T. The elegant complexity of mammalian ecto-5’-nucleotidase (CD73). Tendencies Cell Biol. https://doi.org/10.1016/j.tcb.2021.05.008 (2021).
Google Scholar
Zimmermann, H., Zebisch, M. & Sträter, N. Mobile operate and molecular construction of ecto-nucleotidases. Purinergic Sign 8, 437–502 (2012).
Google Scholar
Ahmadi, P. et al. Defining the CD39/CD73 Axis in SARS-CoV-2 an infection: The CD73(-) phenotype identifies polyfunctional cytotoxic lymphocytes. Cells 9, 1750 (2020).
Google Scholar
Schuler, P. J. et al. CD4+CD73+ T cells are related to decrease T-cell activation and C reactive protein ranges and are depleted in HIV-1 an infection no matter viral suppression. AIDS 27, 1545–1555 (2013).
Google Scholar
Tóth, I. et al. Decreased frequency of CD73+CD8+ T cells of HIV-infected sufferers correlates with immune activation and T cell exhaustion. J. Leukoc. Biol. 94, 551–561 (2013).
Google Scholar
Miller, W. L. et al. Adenosine manufacturing within the ischemic kidney. Circ. Res. 43, 390–397 (1978).
Google Scholar
Thompson, C. I., Sparks, H. V. & Spielman, W. S. Renal dealing with and manufacturing of plasma and urinary adenosine. Am. J. Physiol. 248, F545-551 (1985).
Google Scholar
da Rocha, L. F. et al. Anti-inflammatory results of purine nucleosides, adenosine and inosine, in a mouse mannequin of pleurisy: Proof for the function of adenosine A2 receptors. Purinergic Sign 8, 693–704 (2012).
Google Scholar
Liaudet, L. et al. Inosine exerts a broad vary of antiinflammatory results in a murine mannequin of acute lung harm. Ann. Surg. 235, 568–578 (2002).
Google Scholar
Marton, A. et al. Anti-inflammatory results of inosine in human monocytes, neutrophils and epithelial cells in vitro. Int. J. Mol. Med. 8, 617–621 (2001).
Google Scholar
Shinohara, Y. & Tsukimoto, M. Guanine and inosine nucleotides/nucleosides suppress murine T cell activation. Biochem. Biophys. Res. Commun. 498, 764–768 (2018).
Google Scholar
Bellaver, B. et al. Guanosine inhibits LPS-induced pro-inflammatory response and oxidative stress in hippocampal astrocytes via the heme oxygenase-1 pathway. Purinergic Sign 11, 571–580 (2015).
Google Scholar
Zizzo, M. G. et al. Preventive results of guanosine on intestinal irritation in 2, 4-dinitrobenzene sulfonic acid (DNBS)-induced colitis in rats. Inflammopharmacology 27, 349–359 (2019).
Google Scholar
Macatangay, B. J. C. et al. A randomized, placebo-controlled, pilot scientific trial of dipyridamole to lower human immunodeficiency virus-associated power irritation. J. Infect. Dis. 221, 1598–1606 (2020).
Google Scholar
Mallarino-Haeger, C. et al. Temporary report: Dipyridamole decreases intestine mucosal regulatory T-cell frequencies amongst folks with HIV on antiretroviral remedy. J. Acquir. Immune Defic. Syndr. 85, 665–669 (2020).
Google Scholar
Osborne, W. R. & Barton, R. W. A rat mannequin of purine nucleoside phosphorylase deficiency. Immunology 59, 63–67 (1986).
Google Scholar
Bzowska, A., Kulikowska, E. & Shugar, D. Purine nucleoside phosphorylases: Properties, features, and scientific facets. Pharmacol. Ther. 88, 349–425 (2000).
Google Scholar
Jackson, E. Ok. et al. Characterization of the N(6)-etheno-bridge technique to evaluate extracellular metabolism of adenine nucleotides: Detection of a doable function for purine nucleoside phosphorylase in adenosine metabolism. Purinergic Sign 16, 187–211 (2020).
Google Scholar
Kazemzadeh-Narbat, M. et al. Adenosine-associated supply programs. J. Drug Goal 23, 580–596 (2015).
Google Scholar
Yao, S. Y. et al. Molecular cloning and useful characterization of nitrobenzylthioinosine (NBMPR)-sensitive (es) and NBMPR-insensitive (ei) equilibrative nucleoside transporter proteins (rENT1 and rENT2) from rat tissues. J. Biol. Chem. 272, 28423–28430 (1997).
Google Scholar
Visser, F. et al. Residue 33 of human equilibrative nucleoside transporter 2 is a functionally necessary part of each the dipyridamole and nucleoside binding websites. Mol. Pharmacol. 67, 1291–1298 (2005).
Google Scholar
Eltzschig, H. Ok., Bratton, D. L. & Colgan, S. P. Focusing on hypoxia signalling for the therapy of ischaemic and inflammatory illnesses. Nat. Rev. Drug Discov. 13, 852–869 (2014).
Google Scholar
Zhang, M. et al. Roxadustat (FG-4592) protects towards ischaemia/reperfusion-induced acute kidney harm via inhibiting the mitochondrial injury pathway in mice. Clin. Exp. Pharmacol. Physiol. https://doi.org/10.1111/1440-1681.13601 (2021).
Google Scholar
Might, R. M. et al. A multi-center retrospective cohort research defines the spectrum of kidney pathology in Coronavirus 2019 Illness (COVID-19). Kidney Int. 100, 1303–1315 (2021).
Google Scholar
Eltzschig, H. Ok. Focusing on purinergic signaling for perioperative organ safety. Anesthesiology 118, 1001–1004 (2013).
Google Scholar
Veres, G. et al. Results of inosine on reperfusion harm after cardiopulmonary bypass. J. Cardiothorac. Surg. 5, 106 (2010).
Google Scholar
Mabley, J. G. et al. The novel inosine analogue INO-2002 exerts an anti-inflammatory impact in a murine mannequin of acute lung harm. Shock 32, 258–262 (2009).
Google Scholar
Bettio, L. E., Gil-Mohapel, J. & Rodrigues, A. L. Guanosine and its function in neuropathologies. Purinergic Sign 12, 411–426 (2016).
Google Scholar