Wednesday, March 22, 2023
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
Balanced Post
  • Home
  • Health
  • Fitness
  • Disease
  • Wellness
  • Nutrition
  • Weight Loss
  • Lifestyle
No Result
View All Result
  • Home
  • Health
  • Fitness
  • Disease
  • Wellness
  • Nutrition
  • Weight Loss
  • Lifestyle
No Result
View All Result
Balanced Post
No Result
View All Result
Home Disease

SARS-CoV-2 viral load and shedding kinetics

Balanced Post by Balanced Post
December 3, 2022
in Disease
0
SARS-CoV-2 viral load and shedding kinetics
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


  • Puelles, V. G. et al. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med. 383, 590–592 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Lamers, M. M. & Haagmans, B. L. SARS-CoV-2 pathogenesis. Nat. Rev. Microbiol. 20, 270–284 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Peng, L. et al. SARS-CoV-2 will be detected in urine, blood, anal swabs, and oropharyngeal swabs specimens. J. Med. Virol. 92, 1676–1680 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wölfel, R. et al. Virological evaluation of hospitalized sufferers with COVID-2019. Nature 581, 465–469 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, W. et al. Molecular and serological investigation of 2019-nCoV contaminated sufferers: implication of a number of shedding routes. Emerg. Microbes Infect. 9, 386–389 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pérez-Bartolomé, F. & Sánchez-Quirós, J. Ocular manifestations of SARS-CoV-2: literature evaluation. Arch. Soc. Esp. Oftalmol. 96, 32–40 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Vetter, P. et al. Every day viral kinetics and innate and adaptive immune response evaluation in COVID-19: a case collection. mSphere https://doi.org/10.1128/mSphere.00827-20 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jeong, H. W. et al. Viable SARS-CoV-2 in numerous specimens from COVID-19 sufferers. Clin. Microbiol. Infect. 26, 1520–1524 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cerrada-Romero, C. et al. Excretion and viability of SARS-CoV-2 in feces and its affiliation with the scientific end result of COVID-19. Sci. Rep. 12, 7397 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dergham, J. & Delerce, J. Isolation of viable SARS-CoV-2 virus from feces of an immunocompromised affected person suggesting a attainable fecal mode of transmission. J. Clin. Med. https://doi.org/10.3390/jcm10122696 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao, F. et al. Infectious SARS-CoV-2 in feces of affected person with extreme COVID-19. Emerg. Infect. Dis. 26, 1920–1922 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Solar, J. et al. Isolation of infectious SARS-CoV-2 from urine of a COVID-19 affected person. Emerg. Microbes Infect. 9, 991–993 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Colavita, F. et al. SARS-CoV-2 isolation from ocular secretions of a affected person with COVID-19 in Italy with extended viral RNA detection. Ann. Intern. Med. 173, 242–243 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Matsuyama, S. et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl Acad. Sci. USA 117, 7001–7003 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Case, J. B., Bailey, A. L., Kim, A. S., Chen, R. E. & Diamond, M. S. Progress, detection, quantification, and inactivation of SARS-CoV-2. Virology 548, 39–48 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baggen, J., Vanstreels, E., Jansen, S. & Daelemans, D. Mobile host elements for SARS-CoV-2 an infection. Nat. Microbiol. 6, 1219–1232 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chu, H. et al. Comparative tropism, replication kinetics, and cell harm profiling of SARS-CoV-2 and SARS-CoV with implications for scientific manifestations, transmissibility, and laboratory research of COVID-19: an observational examine. Lancet Microbe 1, e14–e23 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Kampen, J. J. A. et al. Period and key determinants of infectious virus shedding in hospitalized sufferers with coronavirus disease-2019 (COVID-19). Nat. Commun. 12, 267 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bruce, E. A. et al. Predicting infectivity: evaluating 4 PCR-based assays to detect culturable SARS-CoV-2 in scientific samples. EMBO Mol. Med. 14, e15290 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Essaidi-Laziosi, M. & Perez Rodriguez, F. J. Estimating scientific SARS-CoV-2 infectiousness in Vero E6 and first airway epithelial cells. Lancet Microbe 2, e571 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, R. et al. Optimistic price of RT-PCR detection of SARS-CoV-2 an infection in 4880 instances from one hospital in Wuhan, China, from Jan to Feb 2020. Clin. Chim. Acta 505, 172–175 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eur. Surveill. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045 (2020).

    Article 

    Google Scholar 

  • Bullard, J. et al. Predicting infectious extreme acute respiratory syndrome coronavirus 2 from diagnostic samples. Clin. Infect. Dis. 71, 2663–2666 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jefferson, T., Spencer, E. A., Brassey, J. & Heneghan, C. Viral cultures for coronavirus illness 2019 infectivity evaluation: a scientific evaluation. Clin. Infect. Dis. 73, e3884–e3899 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Puhach, O. et al. Infectious viral load in unvaccinated and vaccinated people contaminated with ancestral, Delta or Omicron SARS-CoV-2. Nat. Med. 28, 1491–1500 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van Kasteren, P. B. et al. Comparability of seven industrial RT-PCR diagnostic kits for COVID-19. J. Clin. Virol. 128, 104412 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bentley, E. et al. Collaborative examine for the institution of a WHO worldwide customary for SARS-CoV-2 RNA (WHO, 2020).

  • Zou, L. et al. SARS-CoV-2 viral load in higher respiratory specimens of contaminated sufferers. N. Engl. J. Med. 382, 1177–1179 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Killingley, B. et al. Security, tolerability and viral kinetics throughout SARS-CoV-2 human problem in younger adults. Nat. Med. 28, 1031–1041 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu, F. et al. Quantitative detection and viral load evaluation of SARS-CoV-2 in contaminated sufferers. Clin. Infect. Dis. 71, 793–798 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • European Centre for Illness Prevention and Management & World Well being Group Regional Workplace for Europe. Strategies for the detection and identification of SARS-CoV-2 variants: second replace, August 2022 (WHO, 2022).

  • Ke, R. et al. Longitudinal evaluation of SARS-CoV-2 vaccine breakthrough infections reveals restricted infectious virus shedding and restricted tissue distribution. Open Discussion board Infect. Dis. 9, ofac192 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ke, R. et al. Every day longitudinal sampling of SARS-CoV-2 an infection reveals substantial heterogeneity in infectiousness. Nat. Microbiol. 7, 640–652 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pekosz, A. et al. Antigen-based testing however not real-time polymerase chain response correlates with extreme acute respiratory syndrome coronavirus 2 viral tradition. Clin. Infect. Dis. 73, e2861–e2866 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Monel, B. et al. Launch of infectious virus and cytokines in nasopharyngeal swabs from people contaminated with non-Alpha or Alpha SARS-CoV-2 variants: an observational retrospective examine. EBioMedicine 73, 103637 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kirby, J. E. et al. SARS-CoV-2 antigen checks predict infectivity primarily based on viral tradition: comparability of antigen, PCR viral load, and viral tradition testing on a big pattern cohort. Clin. Microbiol. Infect. https://doi.org/10.1016/j.cmi.2022.07.010 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pickering, S. et al. Comparative efficiency of SARS-CoV-2 lateral circulate antigen checks and affiliation with detection of infectious virus in scientific specimens: a single-centre laboratory analysis examine. Lancet Microbe 2, e461–e471 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tariq, M. et al. Viable extreme acute respiratory syndrome coronavirus 2 isolates exhibit greater correlation with fast antigen assays than subgenomic RNA or genomic RNA. Entrance. Microbiol. 12, 718497 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chu, V. T. et al. Comparability of dwelling antigen testing with RT-PCR and viral tradition throughout the course of SARS-CoV-2 an infection. JAMA Intern. Med. 182, 701–709 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Albert, E. et al. Subject analysis of a fast antigen take a look at (Panbio™ COVID-19 Ag fast take a look at machine) for COVID-19 analysis in major healthcare centres. Clin. Microbiol. Infect. 27, 472.e7–472.e10 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ford, L. et al. Epidemiologic traits related to extreme acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen-based take a look at outcomes, real-time reverse transcription polymerase chain response (rRT-PCR) cycle threshold values, subgenomic RNA, and viral tradition outcomes from college testing. Clin. Infect. Dis. 73, e1348–e1355 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Berger, A. et al. Diagnostic accuracy of two industrial SARS-CoV-2 antigen-detecting fast checks on the level of care in community-based testing facilities. PLoS ONE 16, e0248921 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brümmer, L. E. et al. Accuracy of novel antigen fast diagnostics for SARS-CoV-2: a dwelling systematic evaluation and meta-analysis. PLoS Med. 18, e1003735 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ngo Nsoga, M. T. et al. Diagnostic accuracy of Panbio fast antigen checks on oropharyngeal swabs for detection of SARS-CoV-2. PLoS ONE 16, e0253321 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Korenkov, M. et al. Analysis of a fast antigen take a look at to detect SARS-CoV-2 an infection and establish probably infectious people. J. Clin. Microbiol. 59, e0089621 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Yamayoshi, S. et al. Comparability of fast antigen checks for COVID-19. Viruses 12, 1420 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McKay, S. L. et al. Efficiency analysis of serial SARS-CoV-2 fast antigen testing throughout a nursing dwelling outbreak. Ann. Intern. Med. 174, 945–951 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Nordgren, J. et al. SARS-CoV-2 fast antigen take a look at: excessive sensitivity to detect infectious virus. J. Clin. Virol. 140, 104846 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernandez-Montero, A. & Argemi, J. Validation of a fast antigen take a look at as a screening instrument for SARS-CoV-2 an infection in asymptomatic populations. Sensitivity, specificity and predictive values. EClinicalMedicine 37, 100954 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Currie, D. W. et al. Relationship of SARS-CoV-2 antigen and reverse transcription PCR positivity for viral cultures. Emerg. Infect. Dis. 28, 717–720 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Corman, V. M. et al. Comparability of seven industrial SARS-CoV-2 fast point-of-care antigen checks: a single-centre laboratory analysis examine. Lancet Microbe 2, e311–e319 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lopera, T. J. & Alzate-Ángel, J. C. The usefulness of antigen testing in predicting contagiousness in COVID-19. Microbiol. Spectr. 10, e0196221 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Osterman, A. et al. Impaired detection of Omicron by SARS-CoV-2 fast antigen checks. Med. Microbiol. Immunol. 211, 105–117 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galliez, R. M. et al. Analysis of the Panbio COVID-19 antigen fast diagnostic take a look at in topics contaminated with Omicron utilizing completely different specimens. Microbiol. Spectr. 10, e0125022 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Raïch-Regué, D. et al. Efficiency of SARS-CoV-2 antigen-detecting fast diagnostic checks for Omicron and different variants of concern. Entrance. Microbiol. 13, 810576 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Ogtrop, M. L., van de Laar, T. J. W., Eggink, D., Vanhommerig, J. W. & van der Reijden, W. A. Comparability of the efficiency of the Panbio COVID-19 antigen take a look at in SARS-CoV-2 B.1.1.7 (Alpha) variants versus non-B.1.1.7 variants. Microbiol. Spectr. 9, e0088421 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Lindner, A. Okay. et al. Head-to-head comparability of SARS-CoV-2 antigen-detecting fast take a look at with self-collected nasal swab versus professional-collected nasopharyngeal swab. Eur. Respir. J. 57, 2003961 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meiners, L. & Horn, J. SARS-CoV-2 fast antigen take a look at sensitivity and viral load in freshly symptomatic hospital staff, December 2020 to February 2022. Preprint at https://doi.org/10.2139/ssrn.4099425 (2022).

  • He, X. et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 26, 672–675 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Néant, N. et al. Modeling SARS-CoV-2 viral kinetics and affiliation with mortality in hospitalized sufferers from the French COVID cohort. Proc. Natl Acad. Sci. USA 118, e2017962118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Owusu, D. et al. Persistent SARS-CoV-2 RNA shedding with out proof of infectiousness: a cohort examine of people with COVID-19. J. Infect. Dis. 224, 1362–1371 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cevik, M. et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, length of viral shedding, and infectiousness: a scientific evaluation and meta-analysis. Lancet Microbe 2, e13–e22 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, X. et al. Associations of scientific traits and therapy regimens with the length of viral RNA shedding in sufferers with COVID-19. Int. J. Infect. Dis. 98, 252–260 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, S. M. & Hwang, Y. J. Extended SARS-CoV-2 detection and reversed RT-PCR leads to delicate or asymptomatic sufferers. Infect. Dis. 53, 31–37 (2021).

    Article 
    CAS 

    Google Scholar 

  • Talmy, T. & Tsur, A. Period of SARS-CoV-2 detection in Israel Protection Forces troopers with delicate COVID-19. J. Med. Virol. 93, 608–610 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Singanayagam, A. et al. Period of infectiousness and correlation with RT-PCR cycle threshold values in instances of COVID-19, England, January to Could 2020. Euro Surveill. https://doi.org/10.2807/1560-7917.ES.2020.25.32.2001483 (2020).

  • Perera, R. et al. SARS-CoV-2 virus tradition and subgenomic RNA for respiratory specimens from sufferers with delicate coronavirus illness. Emerg. Infect. Dis. 26, 2701–2704 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Killerby, M. E. et al. Shedding of culturable virus, seroconversion, and 6-month follow-up antibody responses within the first 14 confirmed instances of coronavirus illness 2019 in america. J. Infect. Dis. 224, 771–776 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Glans, H. et al. Shedding of infectious SARS-CoV-2 by hospitalized COVID-19 sufferers in relation to serum antibody responses. BMC Infect. Dis. 21, 494 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Badu, Okay. et al. SARS-CoV-2 viral shedding and transmission dynamics: implications of WHO COVID-19 discharge tips. Entrance. Med. 8, 648660 (2021).

    Article 

    Google Scholar 

  • Munker, D. et al. Dynamics of SARS-CoV-2 shedding within the respiratory tract is dependent upon the severity of illness in COVID-19 sufferers. Eur. Respir. J. 58, 2002724 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Folgueira, M. D. & Luczkowiak, J. Extended SARS-CoV-2 cell tradition replication in respiratory samples from sufferers with extreme COVID-19. Clin. Microbiol. Infect. 27, 886–891 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, M. C. et al. Period of culturable SARS-CoV-2 in hospitalized sufferers with Covid-19. N. Engl. J. Med. 384, 671–673 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Chen, P. Z. et al. SARS-CoV-2 shedding dynamics throughout the respiratory tract, intercourse, and illness severity for grownup and pediatric COVID-19. eLife https://doi.org/10.7554/eLife (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cunha, M. D. P. et al. Atypical extended viral shedding with intra-host SARS-CoV-2 evolution in a mildly affected symptomatic affected person. Entrance. Med. 8, 760170 (2021).

    Article 

    Google Scholar 

  • Aydillo, T. et al. Shedding of viable SARS-CoV-2 after immunosuppressive remedy for most cancers. N. Engl. J. Med. 383, 2586–2588 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Caillard, S., Benotmane, I., Gautier Vargas, G., Perrin, P. & Fafi-Kremer, S. SARS-CoV-2 viral dynamics in immunocompromised sufferers. Am. J. Transpl. 21, 1667–1669 (2021).

    Article 
    CAS 

    Google Scholar 

  • Roedl, Okay. et al. Viral dynamics of SARS-CoV-2 in critically sick allogeneic hematopoietic stem cell transplant recipients and immunocompetent sufferers with COVID-19. Am. J. Respir. Crit. Care Med. 203, 242–245 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leung, W. F. et al. COVID-19 in an immunocompromised host: persistent shedding of viable SARS-CoV-2 and emergence of a number of mutations: a case report. Int. J. Infect. Dis. 114, 178–182 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • European Centre for Illness Prevention and Management. Fast threat evaluation: assessing SARS-CoV-2 circulation, variants of concern, non-pharmaceutical interventions and vaccine rollout within the EU/EEA, fifteenth replace (European Centre for Illness Prevention and Management, 2021).

  • Grant, R. et al. Impression of SARS-CoV-2 Delta variant on incubation, transmission settings and vaccine effectiveness: outcomes from a nationwide case–management examine in France. Lancet Reg. Well being Eur. 13, 100278 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Ogata, T. & Tanaka, H. Shorter incubation interval amongst unvaccinated Delta variant coronavirus illness 2019 sufferers in Japan. Int. J. Environ. Res. Public Well being https://doi.org/10.3390/ijerph19031127 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Backer, J. A. et al. Shorter serial intervals in SARS-CoV-2 instances with Omicron BA.1 variant in contrast with Delta variant, the Netherlands, 13 to 26 December 2021. Eur. Surveill. https://doi.org/10.2807/1560-7917.ES.2022.27.6.2200042 (2022).

    Article 

    Google Scholar 

  • Takahashi, Okay. et al. Period of infectious virus shedding by SARS-CoV-2 Omicron variant-infected vaccinees. Emerg. Infect. Dis. 28, 998–1001 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boucau, J. et al. Period of shedding of culturable virus in SARS-CoV-2 Omicron (BA.1) an infection. N. Engl. J. Med. 387, 275–277 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Jones, T. C. et al. Estimating infectiousness all through SARS-CoV-2 an infection course. Science https://doi.org/10.1126/science.abi5273 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, B. et al. Viral an infection and transmission in a big, well-traced outbreak brought on by the SARS-CoV-2 Delta variant. Nat. Commun. 13, 460 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolze, A. et al. SARS-CoV-2 variant Delta quickly displaced variant Alpha in america and led to greater viral masses. Cell Rep. Med. 3, 100564 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Earnest, R. et al. Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA. Cell Rep. Med. 3, 100583 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo, C. H. et al. An infection with the SARS-CoV-2 Delta variant is related to greater restoration of infectious virus in comparison with the Alpha variant in each unvaccinated and vaccinated people. Clin. Infect. Dis. 75, e715–e725 (2021).

    Article 

    Google Scholar 

  • Despres, H. W. et al. Measuring infectious SARS-CoV-2 in scientific samples reveals a better viral titer: RNA ratio for Delta and Epsilon vs. Alpha variants. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2116518119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hay, J. A. et al. Quantifying the impression of immune historical past and variant on SARS-CoV-2 viral kinetics and an infection rebound: a retrospective cohort examine. eLife 11, e81849 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fall, A. et al. The displacement of the SARS-CoV-2 variant Delta with Omicron: an investigation of hospital admissions and higher respiratory viral masses. EbioMedicine https://doi.org/10.1016/j.ebiom.2022.104008 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lentini, A. & Pereira, A. Monitoring of the SARS-CoV-2 Omicron BA.1/BA.2 lineage transition within the Swedish inhabitants reveals elevated viral RNA ranges in BA.2 instances. Med 3, 636–664 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qassim, S. H. et al. Results of BA.1/BA.2 subvariant, vaccination, and prior an infection on infectiousness of SARS-CoV-2 Omicron infections. J. Journey Med. 29, taac068 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marking, U. et al. Correlates of safety, viral load trajectories and signs in BA.1, BA.1.1 and BA.2 breakthrough infections in triple vaccinated healthcare employees. Preprint at medRxiv https://doi.org/10.1101/2022.04.02.22273333 (2022).

    Article 

    Google Scholar 

  • Wang, Y. et al. Transmission, viral kinetics and scientific traits of the emergent SARS-CoV-2 Delta VOC in Guangzhou, China. EClinicalMedicine 40, 101129 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siedner, M. J. et al. Period of viral shedding and tradition positivity with postvaccination SARS-CoV-2 Delta variant infections. JCI Perception https://doi.org/10.1172/jci.perception.155483 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pierce, C. A. et al. Immune responses to SARS-CoV-2 an infection in hospitalized pediatric and grownup sufferers. Sci. Transl Med. 12, eabd5487 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takahashi, T. et al. Intercourse variations in immune responses that underlie COVID-19 illness outcomes. Nature 588, 315–320 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bunyavanich, S., Do, A. & Vicencio, A. Nasal gene expression of angiotensin-converting enzyme 2 in youngsters and adults. JAMA 323, 2427–2429 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, S. et al. Viral load dynamics and illness severity in sufferers contaminated with SARS-CoV-2 in Zhejiang province, China, January–March 2020: retrospective cohort examine. BMJ 369, m1443 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • L’Huillier, A. G. & Torriani, G. Tradition-competent SARS-CoV-2 in nasopharynx of symptomatic neonates, youngsters, and adolescents. Emerg. Infect. Dis. 26, 2494–2497 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baggio, S. et al. Extreme acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load within the higher respiratory tract of youngsters and adults with early acute coronavirus illness 2019 (COVID-19). Clin. Infect. Dis. 73, 148–150 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chung, E. et al. Comparability of signs and RNA ranges in youngsters and adults with SARS-CoV-2 an infection in the neighborhood setting. JAMA Pediatr. 175, e212025 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, M. S. et al. Scientific traits and viral RNA detection in youngsters with coronavirus illness 2019 within the Republic of Korea. JAMA Pediatr. 175, 73–80 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Bellon, M. et al. Extreme acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load kinetics in symptomatic youngsters, adolescents, and adults. Clin. Infect. Dis. 73, e1384–e1386 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Madera, S. et al. Nasopharyngeal SARS-CoV-2 viral masses in younger youngsters don’t differ considerably from these in older youngsters and adults. Sci. Rep. 11, 3044 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lauer, S. A. et al. The incubation interval of coronavirus illness 2019 (COVID-19) from publicly reported confirmed instances: estimation and utility. Ann. Intern. Med. 172, 577–582 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Elias, C., Sekri, A., Leblanc, P., Cucherat, M. & Vanhems, P. The incubation interval of COVID-19: a meta-analysis. Int. J. Infect. Dis. 104, 708–710 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dhouib, W. et al. The incubation interval throughout the pandemic of COVID-19: a scientific evaluation and meta-analysis. Syst. Rev. 10, 101 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brandal, L. T. et al. Outbreak brought on by the SARS-CoV-2 Omicron variant in Norway, November to December 2021. Eur. Surveill. 26, 2101147 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wu, Y. et al. Incubation interval of COVID-19 brought on by distinctive SARS-CoV-2 strains: a scientific evaluation and meta-analysis. JAMA Netw. Open 5, e2228008 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Solar, Okay. et al. Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2. Science 371, eabe2424 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lavezzo, E. et al. Suppression of a SARS-CoV-2 outbreak within the Italian municipality of Vo’. Nature 584, 425–429 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gudbjartsson, D. F. et al. Unfold of SARS-CoV-2 within the Icelandic inhabitants. N. Engl. J. Med. 382, 2302–2315 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Glenet, M. et al. Asymptomatic COVID-19 grownup outpatients recognized as vital viable SARS-CoV-2 shedders. Sci. Rep. 11, 20615 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. Characterization of an asymptomatic cohort of extreme acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contaminated people outdoors of Wuhan, China. Clin. Infect. Dis. 71, 2132–2138 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lengthy, Q. X. et al. Scientific and immunological evaluation of asymptomatic SARS-CoV-2 infections. Nat. Med. 26, 1200–1204 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, S. et al. Scientific course and molecular viral shedding amongst asymptomatic and symptomatic sufferers with SARS-CoV-2 an infection in a neighborhood therapy heart within the Republic of Korea. JAMA Intern. Med. 180, 1447–1452 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, R. et al. Viral dynamics in asymptomatic sufferers with COVID-19. Int. J. Infect. Dis. 96, 288–290 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Corridor, S. M. et al. Comparability of anterior nares CT values in asymptomatic and symptomatic people identified with SARS-CoV-2 in a college screening program. PLoS ONE 17, e0270694 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kissler, S. M. et al. Viral dynamics of acute SARS-CoV-2 an infection and purposes to diagnostic and public well being methods. PLoS Biol. 19, e3001333 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tallmadge, R. L. et al. Viral RNA load and infectivity of SARS-CoV-2 in paired respiratory and oral specimens from symptomatic, asymptomatic, or postsymptomatic people. Microbiol. Spectr. 10, e0226421 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Marks, M. et al. Transmission of COVID-19 in 282 clusters in Catalonia, Spain: a cohort examine. Lancet Infect. Dis. 21, 629–636 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marc, A. et al. Quantifying the connection between SARS-CoV-2 viral load and infectiousness. eLife https://doi.org/10.7554/eLife.69302 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, H. Y. et al. Contact tracing evaluation of COVID-19 transmission dynamics in Taiwan and threat at completely different publicity durations earlier than and after symptom onset. JAMA Intern. Med. 180, 1156–1163 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mugglestone, M. A. et al. Presymptomatic, asymptomatic and post-symptomatic transmission of SARS-CoV-2: joint British An infection Affiliation (BIA), Healthcare An infection Society (HIS), An infection Prevention Society (IPS) and Royal Faculty of Pathologists (RCPath) steerage. BMC Infect. Dis. 22, 453 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eyre, D. W. et al. Impact of Covid-19 vaccination on transmission of Alpha and Delta variants. N. Engl. J. Med. 386, 744–756 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prunas, O. et al. Vaccination with BNT162b2 reduces transmission of SARS-CoV-2 to family contacts in Israel. Science 375, 1151–1154 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lyngse, F. P. et al. Family transmission of SARS-CoV-2 Omicron variant of concern subvariants BA.1 and BA.2 in Denmark. Nat. Commun. 13, 5760 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leung, N. H. L. Transmissibility and transmission of respiratory viruses. Nat. Rev. Microbiol. 19, 528–545 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alihsan, B. et al. The efficacy of facemasks within the prevention of COVID-19: a scientific evaluation. Preprint at medRxiv https://doi.org/10.1101/2022.07.28.22278153 (2022).

    Article 

    Google Scholar 

  • Hu, Z. et al. Early immune markers of scientific, virological, and immunological outcomes in sufferers with COVID-19: a multi-omics examine. Elife 11, e77943 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, P. Z. et al. Heterogeneity in transmissibility and shedding SARS-CoV-2 through droplets and aerosols. eLife https://doi.org/10.7554/eLife.65774 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adam, D. C. et al. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nat. Med. 26, 1714–1719 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, Z. et al. Superspreading potential of an infection seeded by the SARS-CoV-2 Omicron BA.1 variant in South Korea. J. Infect. 85, e77–e79 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, Z. et al. Superspreading potential of COVID-19 outbreak seeded by Omicron variants of SARS-CoV-2 in Hong Kong. J. Journey Med. 29, taac049 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Althouse, B. M. et al. Superspreading occasions within the transmission dynamics of SARS-CoV-2: alternatives for interventions and management. PLoS Biol. 18, e3000897 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baden, L. R. et al. Efficacy and security of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lopez Bernal, J. et al. Effectiveness of Covid-19 vaccines towards the B.1.617.2 (Delta) variant. N. Engl. J. Med. 385, 585–594 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Feikin, D. R. et al. Period of effectiveness of vaccines towards SARS-CoV-2 an infection and COVID-19 illness: outcomes of a scientific evaluation and meta-regression. Lancet 399, 924–944 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Belik, M. et al. Comparative evaluation of COVID-19 vaccine responses and third booster dose-induced neutralizing antibodies towards Delta and Omicron variants. Nat. Commun. 13, 2476 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pegu, A. et al. Sturdiness of mRNA-1273 vaccine-induced antibodies towards SARS-CoV-2 variants. Science 373, 1372–1377 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lipsitch, M., Krammer, F., Regev-Yochay, G., Lustig, Y. & Balicer, R. D. SARS-CoV-2 breakthrough infections in vaccinated people: measurement, causes and impression. Nat. Rev. Immunol. 22, 57–65 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mostaghimi, D., Valdez, C. N., Larson, H. T., Kalinich, C. C. & Iwasaki, A. Prevention of host-to-host transmission by SARS-CoV-2 vaccines. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(21)00472-2 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Russell, M. W., Moldoveanu, Z., Ogra, P. L. & Mestecky, J. Mucosal immunity in COVID-19: a uncared for however crucial facet of SARS-CoV-2 an infection. Entrance. Immunol. 11, 611337 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheikh-Mohamed, S. et al. Systemic and mucosal IgA responses are variably induced in response to SARS-CoV-2 mRNA vaccination and are related to safety towards subsequent an infection. Mucosal Immunol. 15, 799–808 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Collier, A. Y. et al. Characterization of immune responses in totally vaccinated people after breakthrough an infection with the SARS-CoV-2 Delta variant. Sci. Transl Med. 14, eabn6150 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pouwels, Okay. B. et al. Impact of Delta variant on viral burden and vaccine effectiveness towards new SARS-CoV-2 infections within the UK. Nat. Med. 27, 2127–2135 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singanayagam, A. et al. Neighborhood transmission and viral load kinetics of the SARS-CoV-2 Delta (B.1.617.2) variant in vaccinated and unvaccinated people within the UK: a potential, longitudinal, cohort examine. Lancet Infect. Dis. 22, 183–195 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Levine-Tiefenbrun, M. et al. Viral a great deal of Delta-variant SARS-CoV-2 breakthrough infections after vaccination and booster with BNT162b2. Nat. Med. 27, 2108–2110 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Emary, Okay. R. W. et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine towards SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory evaluation of a randomised managed trial. Lancet 397, 1351–1362 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chia, P. Y. et al. Virological and serological kinetics of SARS-CoV-2 Delta variant vaccine breakthrough infections: a multicentre cohort examine. Clin. Microbiol. Infect. 28, 612.e1–612.e7 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Garcia-Knight, M. et al. Infectious viral shedding of SARS-CoV-2 Delta following vaccination: a longitudinal cohort examine. PLoS Pathog. 18, e1010802 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peña-Hernández, M. A. et al. Comparability of infectious SARS-CoV-2 from the nasopharynx of vaccinated and unvaccinated people. Preprint at medRxiv https://doi.org/10.1101/2021.12.28.21268460 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shamier, M. C. et al. Virological traits of SARS-CoV-2 vaccine breakthrough infections in well being care employees. Preprint at medRxiv https://doi.org/10.1101/2021.08.20.21262158 (2021).

    Article 

    Google Scholar 

  • Jung, J. et al. Transmission and infectious SARS-CoV-2 shedding kinetics in vaccinated and unvaccinated people. JAMA Netw. Open 5, e2213606 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hirotsu, Y. et al. Related viral masses in Omicron infections no matter vaccination standing. Preprint at medRxiv https://doi.org/10.1101/2022.04.19.22274005 (2022).

    Article 

    Google Scholar 

  • Letizia, A. G. et al. SARS-CoV-2 seropositivity and subsequent an infection threat in wholesome younger adults: a potential cohort examine. Lancet Respir. Med. 9, 712–720 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pulliam, J. R. C. et al. Elevated threat of SARS-CoV-2 reinfection related to emergence of Omicron in South Africa. Science 376, eabn4947 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harris, R. J. et al. Impact of vaccination on family transmission of SARS-CoV-2 in England. N. Engl. J. Med. 385, 759–760 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Bates, T. A. et al. Vaccination earlier than or after SARS-CoV-2 an infection results in strong humoral response and antibodies that successfully neutralize variants. Sci. Immunol. 7, eabn8014 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wratil, P. R. et al. Three exposures to the spike protein of SARS-CoV-2 by both an infection or vaccination elicit superior neutralizing immunity to all variants of concern. Nat. Med. 28, 496–503 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Malato, J. et al. Danger of BA.5 an infection amongst individuals uncovered to earlier SARS-CoV-2 variants. N. Engl. J. Med. 387, 953–954 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron an infection. Nature 608, 593–602 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hassan, A. O. et al. A single-dose intranasal ChAd vaccine protects higher and decrease respiratory tracts towards SARS-CoV-2. Cell 183, 169–184 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lapuente, D. et al. Protecting mucosal immunity towards SARS-CoV-2 after heterologous systemic prime-mucosal increase immunization. Nat. Commun. 12, 6871 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Afkhami, S. et al. Respiratory mucosal supply of next-generation COVID-19 vaccine gives strong safety towards each ancestral and variant strains of SARS-CoV-2. Cell 185, 896–915 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grubaugh, N. D. & Hodcroft, E. B. Public well being actions to manage new SARS-CoV-2 variants. Cell 184, 1127–1132 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carreño, J. M. et al. Exercise of convalescent and vaccine serum towards SARS-CoV-2 Omicron. Nature 602, 682–688 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Ashcroft, P., Lehtinen, S. & Bonhoeffer, S. Take a look at-trace-isolate-quarantine (TTIQ) intervention methods after symptomatic COVID-19 case identification. PLoS ONE 17, e0263597 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santos Bravo, M. et al. Viral tradition confirmed SARS-CoV-2 subgenomic RNA worth as a very good surrogate marker of infectivity. J. Clin. Microbiol. 60, e0160921 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Kim, J. Y. et al. Diagnostic usefulness of subgenomic RNA detection of viable SARS-CoV-2 in sufferers with COVID-19. Clin. Microbiol. Infect. 28, 101–106 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alexandersen, S. & Chamings, A. SARS-CoV-2 genomic and subgenomic RNAs in diagnostic samples aren’t an indicator of energetic replication. Nat. Commun. 11, 6059 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonenfant, G. et al. Surveillance and correlation of SARS-CoV-2 viral RNA, antigen, virus isolation, and self-reported signs in a longitudinal examine with day by day sampling. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciac282 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Peeling, R. W., Heymann, D. L., Teo, Y. Y. & Garcia, P. J. Diagnostics for COVID-19: transferring from pandemic response to manage. Lancet 399, 757–768 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pilarowski, G. et al. Efficiency traits of a fast extreme acute respiratory syndrome coronavirus 2 antigen detection assay at a public plaza testing website in San Francisco. J. Infect. Dis. 223, 1139–1144 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leber, W. et al. Evaluating the diagnostic accuracy of point-of-care lateral circulate antigen testing for SARS-CoV-2 with RT-PCR in major care (REAP-2). EClinicalMedicine 38, 101011 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kohmer, N. et al. The comparative scientific efficiency of 4 SARS-CoV-2 fast antigen checks and their correlation to infectivity in vitro. J. Clin. Med. https://doi.org/10.3390/jcm10020328 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, W. et al. Detection of SARS-CoV-2 in several types of scientific specimens. JAMA 323, 1843–1844 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, R. A., Herigon, J. C., Benedetti, A., Pollock, N. R. & Denkinger, C. M. Efficiency of saliva, oropharyngeal swabs, and nasal swabs for SARS-CoV-2 molecular detection: a scientific evaluation and meta-analysis. J. Clin. Microbiol. 59, e02881-20 (2021).

  • Tsang, N. N. Y. et al. Diagnostic efficiency of various sampling approaches for SARS-CoV-2 RT-PCR testing: a scientific evaluation and meta-analysis. Lancet Infect. Dis. 21, 1233–1245 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peto, T. COVID-19: fast antigen detection for SARS-CoV-2 by lateral circulate assay: a nationwide systematic analysis of sensitivity and specificity for mass-testing. EClinicalMedicine 36, 100924 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hay, J. A. et al. Estimating epidemiologic dynamics from cross-sectional viral load distributions. Science 373, eabh0635 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Peccia, J. et al. Measurement of SARS-CoV-2 RNA in wastewater tracks neighborhood an infection dynamics. Nat. Biotechnol. 38, 1164–1167 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xin, H. et al. The incubation interval distribution of coronavirus illness 2019: a scientific evaluation and meta-analysis. Clin. Infect. Dis. 73, 2344–2352 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu, I. T. et al. Proof of airborne transmission of the extreme acute respiratory syndrome virus. N. Engl. J. Med. 350, 1731–1739 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cheng, P. Okay. et al. Viral shedding patterns of coronavirus in sufferers with possible extreme acute respiratory syndrome. Lancet 363, 1699–1700 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peiris, J. S. et al. Scientific development and viral load in a neighborhood outbreak of coronavirus-associated SARS pneumonia: a potential examine. Lancet 361, 1767–1772 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan, P. Okay. S. et al. Laboratory analysis of SARS. Emerg. Infect. Dis. 10, 825–831 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, W. et al. Lengthy-term SARS coronavirus excretion from affected person cohort, China. Emerg. Infect. Dis. 10, 1841–1843 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, D. et al. Persistent shedding of viable SARS-CoV in urine and stool of SARS sufferers throughout the convalescent section. Eur. J. Clin. Microbiol. Infect. Dis. 24, 165–171 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • V’Kovski, P. et al. Disparate temperature-dependent virus–host dynamics for SARS-CoV-2 and SARS-CoV within the human respiratory epithelium. PLoS Biol. 19, e3001158 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pitzer, V. E., Leung, G. M. & Lipsitch, M. Estimating variability within the transmission of extreme acute respiratory syndrome to family contacts in Hong Kong, China. Am. J. Epidemiol. 166, 355–363 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Riley, S. et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: impression of public well being interventions. Science 300, 1961–1966 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. & Fouchier, R. A. Isolation of a novel coronavirus from a person with pneumonia in Saudi Arabia. N. Engl. J. Med. 367, 1814–1820 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Breban, R., Riou, J. & Fontanet, A. Interhuman transmissibility of Center East respiratory syndrome coronavirus: estimation of pandemic threat. Lancet 382, 694–699 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oh, M. D. et al. Viral load kinetics of MERS coronavirus an infection. N. Engl. J. Med. 375, 1303–1305 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Corman, V. M. et al. Viral shedding and antibody response in 37 sufferers with Center East respiratory syndrome coronavirus An infection. Clin. Infect. Dis. 62, 477–483 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Min, C.-Okay. et al. Comparative and kinetic evaluation of viral shedding and immunological responses in MERS sufferers representing a broad spectrum of illness severity. Sci. Rep. 6, 25359 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ip, D. Okay. et al. Viral shedding and transmission potential of asymptomatic and paucisymptomatic influenza virus infections in the neighborhood. Clin. Infect. Dis. 64, 736–742 (2017).

    PubMed 

    Google Scholar 

  • Carrat, F. et al. Time traces of an infection and illness in human influenza: a evaluation of volunteer problem research. Am. J. Epidemiol. 167, 775–785 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Pawelek, Okay. A. et al. Modeling within-host dynamics of influenza virus an infection together with immune responses. PLoS Comput. Biol. 8, e1002588 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ip, D. Okay. M. et al. The dynamic relationship between scientific symptomatology and viral shedding in naturally acquired seasonal and pandemic influenza virus infections. Clin. Infect. Dis. 62, 431–437 (2016).

    PubMed 

    Google Scholar 

  • Nair, H. et al. International burden of acute decrease respiratory infections as a result of respiratory syncytial virus in younger youngsters: a scientific evaluation and meta-analysis. Lancet 375, 1545–1555 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bagga, B. et al. Evaluating influenza and RSV viral and illness dynamics in experimentally contaminated adults predicts scientific effectiveness of RSV antivirals. Antivir. Ther. 18, 785–791 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • DeVincenzo, J. P. et al. Viral load drives illness in people experimentally contaminated with respiratory syncytial virus. Am. J. Respir. Crit. Care Med. 182, 1305–1314 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kutter, J. S. et al. Small portions of respiratory syncytial virus RNA solely in giant droplets round infants hospitalized with acute respiratory infections. Antimicrob. Resist. Infect. Management 10, 100 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source_link

    Advertisement Banner
    Previous Post

    Slimming World nacho fashion feast

    Next Post

    Survey: Digital well being investments will depend on ROI and medical validation in 2023

    Balanced Post

    Balanced Post

    Next Post
    Survey: Digital well being investments will depend on ROI and medical validation in 2023

    Survey: Digital well being investments will depend on ROI and medical validation in 2023

    Recommended

    44 Finest Body weight Workouts (for Every Muscle Group)

    44 Finest Body weight Workouts (for Every Muscle Group)

    2 months ago
    How one can Generate Large Money Circulate with Rental Properties

    How one can Generate Large Money Circulate with Rental Properties

    1 week ago

    Don't Miss

    Cultivated meat firm GOOD Meat clears FDA security hurdle : Photographs

    Cultivated meat firm GOOD Meat clears FDA security hurdle : Photographs

    March 22, 2023
    Spring Window Buying • Kath Eats

    Spring Window Buying • Kath Eats

    March 22, 2023
    Honey Mustard Dressing – A Lovely Mess

    Honey Mustard Dressing – A Lovely Mess

    March 22, 2023
    After Breast Most cancers: Health and Diet Suggestions

    After Breast Most cancers: Health and Diet Suggestions

    March 22, 2023

    Balanced Post

    Welcome to Balanced Post The goal of Balanced Post is to give you the absolute best news sources for any topic! Our topics are carefully curated and constantly updated as we know the web moves fast so we try to as well.

    Categories

    • Disease
    • Fitness
    • Health
    • Lifestyle
    • Nutrition
    • Weight Loss
    • Wellness

    Recent News

    Cultivated meat firm GOOD Meat clears FDA security hurdle : Photographs

    Cultivated meat firm GOOD Meat clears FDA security hurdle : Photographs

    March 22, 2023
    Spring Window Buying • Kath Eats

    Spring Window Buying • Kath Eats

    March 22, 2023
    • Home
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions

    Copyright © 2022 Balancedpost.com | All Rights Reserved.

    No Result
    View All Result
    • Home
    • Health
    • Fitness
    • Disease
    • Wellness
    • Nutrition
    • Weight Loss
    • Lifestyle

    Copyright © 2022 Balancedpost.com | All Rights Reserved.