Crump, J. A. & Mintz, E. D. International tendencies in typhoid and paratyphoid fever. Clin. Infect. Dis. 50, 241–246 (2010).
Google Scholar
Britto, C. D., Wong, V. Ok., Dougan, G. & Pollard, A. J. A scientific evaluate of antimicrobial resistance in Salmonella enterica serovar Typhi, the etiological agent of typhoid. PLoS Negl. Trop. Dis. 12, e0006779. https://doi.org/10.1371/journal.pntd.0006779 (2018).
Google Scholar
Birkhold, M., Mwisongo, A., Pollard, A. J. & Neuzil, Ok. M. Typhoid conjugate vaccines: Advancing the analysis and public well being agendas. J. Infect. Dis. 224, S781–S787. https://doi.org/10.1093/infdis/jiab449 (2021).
Google Scholar
Crawford, R. W. et al. Lack of very-long O-antigen chains optimizes capsule-mediated immune evasion by Salmonella enterica serovar Typhi. Bio 4, e00232-13 (2013).
Raffatellu, M. et al. Capsule-mediated immune evasion: A brand new speculation explaining facets of typhoid fever pathogenesis. Infect. Immun. 74, 19–27. https://doi.org/10.1128/IAI.74.1.19-27.2006 (2006).
Google Scholar
Jin, C. et al. Vi-specific serological correlates of safety for typhoid fever. J. Exp. Med https://doi.org/10.1084/jem.20201116 (2021).
Google Scholar
Levine, M. M. Typhoid Fever Vaccine fifth edn. (Saunders Elsevier, 2008).
Yang, Y. A., Chong, A. & Track, J. Why is eradicating typhoid fever so difficult: Implications for vaccine and therapeutic design. Vaccines (Basel) https://doi.org/10.3390/vaccines6030045 (2018).
Google Scholar
Lin, F. Y. et al. The efficacy of a Salmonella Typhi Vi conjugate vaccine in two-to-five-year-old youngsters. N. Engl. J. Med. 344, 1263–1269 (2001).
Google Scholar
Bhutta, Z. A. et al. Immunogenicity and security of the Vi-CRM197 conjugate vaccine in opposition to typhoid fever in adults, youngsters, and infants in south and Southeast Asia: Outcomes from two randomised, observer-blind, age de-escalation, section 2 trials. Lancet Infect. Dis. 14, 119–129 (2014).
Google Scholar
Mohan, V. Ok. et al. Security and immunogenicity of a Vi polysaccharide-tetanus toxoid conjugate vaccine (Typbar-TCV) in wholesome infants, youngsters, and adults in typhoid endemic areas: A multicenter, 2-cohort, open-label, double-blind, randomized managed section 3 research. Clin. Infect. Dis. 61, 393–402. https://doi.org/10.1093/cid/civ295 (2015).
Google Scholar
Medise, B. E. et al. A novel Vi-diphtheria toxoid typhoid conjugate vaccine is secure and might induce immunogenicity in wholesome Indonesian youngsters 2–11 years: A section II preliminary report. BMC Pediatr. 20, 480. https://doi.org/10.1186/s12887-020-02375-4 (2020).
Google Scholar
Qadri, F. et al. Safety by vaccination of kids in opposition to typhoid fever with a Vi-tetanus toxoid conjugate vaccine in city Bangladesh: A cluster-randomised trial. Lancet 398, 675–684. https://doi.org/10.1016/S0140-6736(21)01124-7 (2021).
Google Scholar
Waddington, C. S. et al. Advancing the administration and management of typhoid fever: A evaluate of the historic function of human problem research. J. Infect. 68, 405–418 (2014).
Google Scholar
Waddington, C. S. et al. An outpatient, ambulant-design, managed human an infection mannequin utilizing escalating doses of Salmonella Typhi problem delivered in sodium bicarbonate answer. Clin. Infect. Dis. 58, 1230–1240 (2014).
Google Scholar
Meiring, J. E., Giubilini, A., Savulescu, J., Pitzer, V. E. & Pollard, A. J. Producing the proof for typhoid vaccine introduction: Issues for world illness burden estimates and vaccine testing via human problem. Clin Infect Dis 69, S402–S407. https://doi.org/10.1093/cid/ciz630 (2019).
Google Scholar
Mathur, R. et al. A mouse mannequin of Salmonella Typhi an infection. Cell 151, 590–602 (2012).
Google Scholar
Track, J. et al. Absence of TLR11 in mice doesn’t confer susceptibility to Salmonella Typhi. Cell 164, 827–828 (2016).
Google Scholar
Mathur, R., Zeng, W., Hayden, M. S. & Ghosh, S. Mice missing TLR11 exhibit variable Salmonella Typhi susceptibility. Cell 164, 829–830 (2016).
Google Scholar
Libby, S. J. et al. Humanized nonobese diabetic-scid IL2rγnull mice are vulnerable to deadly Salmonella Typhi an infection. Proc. Natl. Acad. Sci. U.S.A. 107, 15589–15594. https://doi.org/10.1073/pnas.1005566107 (2010).
Google Scholar
Track, J. et al. A mouse mannequin for the human pathogen Salmonella Typhi. Cell Host Microbe 8, 369–376. https://doi.org/10.1016/j.chom.2010.09.003 (2010).
Google Scholar
FirozMian, M., Pek, E. A., Chenoweth, M. J. & Ashkar, A. A. Humanized mice are vulnerable to Salmonella Typhi an infection. Cell Mol. Immunol. 8, 83–87 (2011).
Google Scholar
Walker, J. A., Vuyyuru, R., Manser, T. & Alugupalli, Ok. R. Humoral Immunity in mice transplanted with hematopoietic stem cells derived from human umbilical twine blood recapitulates that of human infants. Stem Cells Dev. 26, 1715–1723. https://doi.org/10.1089/scd.2017.0156 (2017).
Google Scholar
Vuyyuru, R., Liu, H., Manser, T. & Alugupalli, Ok. R. Traits of Borrelia hermsii an infection in human hematopoietic stem cell-engrafted mice mirror these of human relapsing fever. Proc. Natl. Acad. Sci. U.S.A. 108, 20707–20712 (2011).
Google Scholar
Collaborative Cross Consortium. The genome structure of the Collaborative Cross mouse genetic reference inhabitants. Genetics 190, 389–401 (2012).
Google Scholar
Noll, Ok. E., Ferris, M. T. & Heise, M. T. The collaborative cross: A techniques genetics useful resource for learning host-pathogen interactions. Cell Host Microbe 25, 484–498. https://doi.org/10.1016/j.chom.2019.03.009 (2019).
Google Scholar
Ferris, M. T. et al. Modeling host genetic regulation of influenza pathogenesis within the collaborative cross. PLoS Pathog 9, e1003196 (2013).
Google Scholar
Xiong, H. et al. Genomic profiling of collaborative cross founder mice contaminated with respiratory viruses reveals novel transcripts and infection-related strain-specific gene and isoform expression. G3 (Bethesda) 4, 1429–1444 (2014).
Google Scholar
Rasmussen, A. L. et al. Host genetic variety permits Ebola hemorrhagic fever pathogenesis and resistance. Science 346, 987–991 (2014).
Google Scholar
Smith, C. M. et al. Functionally overlapping variants management tuberculosis susceptibility in collaborative cross mice. MBio https://doi.org/10.1128/mBio.02791-19 (2019).
Google Scholar
Zhang, J. et al. A loss-of-function mutation within the integrin alpha L (Itgal) gene contributes to susceptibility to Salmonella enterica serovar typhimurium an infection in collaborative cross pressure CC042. Infect. Immun. https://doi.org/10.1128/IAI.00656-19 (2019).
Google Scholar
Zhang, J. et al. Identification of latest loci concerned within the host susceptibility to Salmonella Typhimurium in collaborative cross mice. BMC Genom. 19, 303. https://doi.org/10.1186/s12864-018-4667-0 (2018).
Google Scholar
Durrant, C. et al. Collaborative cross mice and their energy to map host susceptibility to Aspergillus fumigatus an infection. Genome Res. 21, 1239–1248 (2011).
Google Scholar
Loomis, W. P. et al. Temporal and anatomical host resistance to persistent Salmonella an infection is quantitatively dictated by Nramp1 and influenced by host genetic background. PLoS ONE 9, e111763. https://doi.org/10.1371/journal.pone.0111763 (2014).
Google Scholar
Pandya, Ok. D. et al. An unmutated IgM response to the Vi polysaccharide of Salmonella Typhi contributes to protecting immunity in a murine mannequin of typhoid. J. Immunol. 200, 4078–4084. https://doi.org/10.4049/jimmunol.1701348 (2018).
Google Scholar
Khosla, S. N. Typhoid hepatitis. Postgrad. Med. J. 66, 923–925 (1990).
Google Scholar
Narechania, S., Duran, M., Karivedu, V. & Gopalakrishna, Ok. V. A case of typhoid fever with hepatic granulomas and enteritis. Case Rep. Pathol. 2015, 745461 (2015).
Martin, F. & Kearney, J. F. B1 cells: Similarities and variations with different B cell subsets. Curr. Opin. Immunol. 13, 195–201 (2001).
Google Scholar
Marshall, J. L. et al. The capsular polysaccharide Vi from Salmonella Typhi is a B1b antigen. J. Immunol. 189, 5527–5532. https://doi.org/10.4049/jimmunol.1103166 (2012).
Google Scholar
Hensel, J. A., Khattar, V., Ashton, R. & Ponnazhagan, S. Characterization of immune cell subtypes in three generally used mouse strains reveals gender and strain-specific variations. Lab. Investig. 99, 93–106. https://doi.org/10.1038/s41374-018-0137-1 (2019).
Google Scholar
Martin, M. D., Sompallae, R., Winborn, C. S., Harty, J. T. & Badovinac, V. P. Numerous CD8 T cell responses to viral an infection revealed by the collaborative cross. Cell Rep. 31, 107508. https://doi.org/10.1016/j.celrep.2020.03.072 (2020).
Google Scholar
Khan, A. Q., Lees, A. & Snapper, C. M. Differential regulation of IgG anti-capsular polysaccharide and antiprotein responses to intact Streptococcus pneumoniae within the presence of cognate CD4+ T cell assist. J. Immunol. 172, 532–539 (2004).
Google Scholar
Dickinson, G. S., Levenson, E. A., Walker, J. A., Kearney, J. F. & Alugupalli, Ok. R. IL-7 permits antibody responses to bacterial polysaccharides by selling B cell receptor variety. J. Immunol. 201, 1229–1240. https://doi.org/10.4049/jimmunol.1800162 (2018).
Google Scholar
Sabbagh, S. C., Forest, C. G., Lepage, C., Leclerc, J. M. & Daigle, F. So comparable, but so totally different: Uncovering distinctive options within the genomes of Salmonella enterica serovars Typhimurium and Typhi. FEMS Microbiol. Lett. 305, 1–13. https://doi.org/10.1111/j.1574-6968.2010.01904.x (2010).
Google Scholar
Nuccio, S. P. & Baumler, A. J. Comparative evaluation of Salmonella genomes identifies a metabolic community for escalating development within the infected intestine. MBio 5, e00929-00914. https://doi.org/10.1128/mBio.00929-14 (2014).
Google Scholar
Haneda, T. et al. The capsule-encoding viaB locus reduces intestinal irritation by a Salmonella pathogenicity island 1-independent mechanism. Infect. Immun. 77, 2932–2942. https://doi.org/10.1128/IAI.00172-09 (2009).
Google Scholar
Wilson, R. P. et al. The Vi capsular polysaccharide prevents complement receptor 3-mediated clearance of Salmonella enterica serotype Typhi. Infect. Immun. 79, 830–837 (2011).
Google Scholar
Wilson, R. P. et al. The Vi-capsule prevents Toll-like receptor 4 recognition of Salmonella. Cell Microbiol. 10, 876–890 (2008).
Google Scholar
Raffatellu, M. et al. The Vi capsular antigen of Salmonella enterica serotype Typhi reduces Toll-like receptor-dependent interleukin-8 expression within the intestinal mucosa. Infect. Immun. 73, 3367–3374. https://doi.org/10.1128/IAI.73.6.3367-3374.2005 (2005).
Google Scholar
Hiyoshi, H. et al. Mechanisms to evade the phagocyte respiratory burst arose by convergent evolution in typhoidal Salmonella Serovars. Cell Rep. 22, 1787–1797. https://doi.org/10.1016/j.celrep.2018.01.016 (2018).
Google Scholar
Wangdi, T. et al. The Vi capsular polysaccharide permits Salmonella enterica serovar typhi to evade microbe-guided neutrophil chemotaxis. PLoS Pathog 10, e1004306 (2014).
Google Scholar
Belde, V. et al. Terminal deoxynucleotidyl transferase isn’t required for antibody response to polysaccharide vaccines in opposition to Streptococcus pneumoniae and Salmonella enterica Serovar Typhi. Infect. Immun. https://doi.org/10.1128/IAI.00211-18 (2018).
Google Scholar
Deng, L. et al. Host adaptation of a bacterial toxin from the human pathogen Salmonella Typhi. Cell 159, 1290–1299. https://doi.org/10.1016/j.cell.2014.10.057 (2014).
Google Scholar
Track, J., Gao, X. & Galan, J. E. Construction and performance of the Salmonella Typhi chimaeric A2B5 typhoid toxin. Nature 499, 350–354. https://doi.org/10.1038/nature12377 (2013).
Google Scholar
Karlinsey, J. E. et al. Genome-wide evaluation of Salmonella enterica serovar Typhi in humanized mice reveals key virulence options. Cell Host Microbe 26, 426–434. https://doi.org/10.1016/j.chom.2019.08.001 (2019).
Google Scholar
Gibani, M. M. et al. Investigation of the function of typhoid toxin in acute typhoid fever in a human problem mannequin. Nat. Med. 25, 1082–1088. https://doi.org/10.1038/s41591-019-0505-4 (2019).
Google Scholar
Poltorak, A. et al. Faulty LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 282, 2085–2088 (1998).
Google Scholar
O’Brien, A. D., Rosenstreich, D. L. & Taylor, B. A. Management of pure resistance to Salmonella typhimurium and Leishmania donovani in mice by intently linked however distinct genetic loci. Nature 287, 440–442 (1980).
Google Scholar
Khan, R. T., Chevenon, M., Yuki, Ok. E. & Malo, D. Genetic dissection of the Ity3 locus identifies a task for Ncf2 co-expression modules and suggests Selp as a candidate gene underlying the Ity3.2 locus. Entrance. Immunol. 5, 375. https://doi.org/10.3389/fimmu.2014.00375 (2014).
Google Scholar
Scoggin, Ok. et al. Elucidating mechanisms of tolerance to Salmonella typhimurium throughout long-term infections utilizing the collaborative cross. MBio https://doi.org/10.1128/mbio.01120-22 (2022).
Google Scholar
Morgan, A. P. et al. The mouse common genotyping array: From substrains to subspecies. G3 (Bethesda) 6, 263–279 (2015).
Google Scholar
Sigmon, J. S. et al. Content material and efficiency of the MiniMUGA genotyping array: A brand new software to enhance rigor and reproducibility in mouse analysis. Genetics 216, 905–930. https://doi.org/10.1534/genetics.120.303596 (2020).
Google Scholar
Dickinson, G. S., Levenson, E. A., Walker, J. A., Kearney, J. F. & Alugupalli, Ok. R. IL-7 permits antibody responses to bacterial polysaccharides by selling B cell receptor variety. J. Immunol. https://doi.org/10.4049/jimmunol.1800162 (2018).
Google Scholar
Kothari, S. et al. A novel technique for purification of Vi capsular polysaccharide produced by Salmonella enterica subspecies enterica serovar Typhi. Vaccine 31, 4714–4719. https://doi.org/10.1016/j.vaccine.2013.08.037 (2013).
Google Scholar